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Summary This paper introduces a new verification technique designed for, but not lim-

ited to, quantitative precipitation forecasts. It is tested on, and examples are given for,
an intercomparison of very short-period nowcasting schemes. One of these nowcasters is a
Bayesian scheme that is used in an extensive ensemble formulation, and the verification
scheme is uniquely capable of treating both the ensemble members and the mean fore-
cast. The verification scheme uses Procrustes shape analysis methods that are well estab-
lished in statistics but have not, to date, been applied to meteorological forecast
assessment. The Procrustes methodology allows for a decomposition of the forecast error
into any number of components such as location (displacement), shape, size, orientation
and intensity. Each error component can be afforded a separate weighting such that a cost
or value of the forecast can be calculated that accounts for different error types. For
example, a forecaster who is concerned with the location of a storm would place greater
emphasis on correct location in the forecast than other attributes. This ability to apply
weights makes the system particularly suited to real-time verification applications where
confidence in the performance of the forecast translates into improved dissemination to
users. In addition, the decomposition of the error into parts enables diagnosis of the error
sources that can lead to model adjustment and improvement.

ª 2007 Elsevier B.V. All rights reserved.
0022-1694/$ - see front matter ª 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.jhydrol.2007.05.036

* Corresponding author. Tel.: +1 573 884 8828.
E-mail address: amicheas@stat.missouri.edu (A.C. Micheas).

mailto:amicheas@stat.missouri.edu


106 A.C. Micheas et al.
Introduction

Typical forecast verification schemes, particularly in the
field of QPF (Quantitative Precipitation Forecasts), usually
employ categorical statistics such as the critical success in-
dex (CSI) or Heidke Skill Score. Particularly in the case of
spatially dispersed precipitation areas, several authors have
criticized such scores as not representing the true value of
the forecast to the forecaster (see for example Ebert and
McBride, 2000; Grams et al., 2006).

Two issues that have arisen due to current trends in fore-
casting are the need to verify forecasts in real-time and the
need to verify ensemble member forecasts. Some of the
newer proposed multiscale verification methods are very
useful, but may suffer in the real-time and ensemble situa-
tions because of the multi-dimensional nature of the fore-
cast verification problem (e.g. Casati et al., 2005). The
solution is to develop a system that is both robust in that it
produces useful and objective measures of forecast accuracy
(and preferably indications of forecast strengths and weak-
nesses), while reducing the dimensionality of the verification
to an extent whereby multiple realizations of an ensemble
member can be verified individually and overall.

Starting with Ebert and McBride (2000), methods have
been developed that account for different aspects of fore-
cast errors. In this case, it was noted that QPF may have a
value to a forecaster even when the categorical skill scores
are very low because the forecast may contain a small error
in location (propagation) such that the forecast and actual
precipitation areas hardly overlap. On the other hand, the
forecast could represent the size, shape and intensity of
the precipitation area (cell) accurately, and the forecaster
with knowledge of the meteorology or behavior of the fore-
cast model may be able to either adjust the forecast or to
interpret it with expert knowledge by including a subjective
uncertainty. Therefore, Ebert and McBride (2000) developed
a verification methodology that differentiated the location
error from all other errors. The work presented herein ex-
tends that concept by separating error terms due to propa-
gation, dilation, intensity, rotation and shape.

There are a number of aspects to the rationale behind
the approach taken. Firstly, valuable QPFs contain more
information than simply the location and intensity of
future precipitation. Structural factors such as the shape
of the precipitation area, the change of intensity, the align-
ment and the size all provide information of the type of pre-
cipitation, its likely persistence and future development.
Therefore, an analysis of model predictions may provide
information on model aspects of storm behavior, leading
to improvements in user interpretation and value of fore-
casts and, potentially, improvements to the model itself.

Secondly, following Ebert and McBride (2000), the meth-
odology employs an object-oriented approach with flexibil-
ity in the determination of a boundary threshold intensity to
define objects. One important point is that there is no
restriction on the number of objects in either the forecast
or the actual (truth). Therefore, it is critical to penalize a
forecast that does not produce the same number of objects
(cells) as exist in the ‘‘truth’’. Within this methodology such
a penalty is introduced. This allows the verification scheme
to reward forecasts that provide good representations of
storm initiation, dissipation, merging and splitting, QPF as-
pects that are notoriously difficult to parameterize.

Thirdly, in order to fully exploit the benefits of the veri-
fication scheme for model interpretation we choose to work
in radar reflectivity rather than precipitation rate. This
gives a number of advantages of which two are dominant.
One is that one avoids the error introduced in the conver-
sion from reflectivity to rainrate. This further retains the
structural information contained in reflectivity that a fore-
caster may use in assessments of storm type and develop-
ment. However, this means that we are not truly verifying
precipitation forecasts, but rather the quality of the fore-
cast radar reflectivity fields compared to actual fields. In
each case there is no rainfall (precipitation) truth observa-
tion, but this is common with many verifications.

This paper introduces the new verification scheme that
uses a shape analysis methodology that reduces the dimen-
sionality of the verification problem by identifying precipi-
tation objects and assigning their characteristics through a
number of angular components that specify the shape of
the object in the forecast and corresponding true image.
In the following section, the ensemble verification scheme
is introduced and described. In Section ‘‘Nowcast schemes
and data’’, we discuss the case study we consider along with
the nowcasting scheme. Section ‘‘Application of cell identi-
fication and verification methods’’ presents an example of
how the method may be applied using forecasts from a num-
ber of different short-period quantitative precipitation
forecast systems. This section illustrates the variety of met-
rics available through the methodology. Based on this exam-
ple, Section ‘‘Concluding remarks’’ provides a discussion of
the observed applicability of the scheme and suggestions for
implementation and broader research.

Ensemble verification methods

The verification of nowcasts is critical for evaluating any
proposed forecast, and replacements for the older categor-
ical statistical measures that do not reflect the real value of
precipitation forecasts need to be developed. Verification is
not best accomplished using a pixel by pixel comparison, as
many forecast fields, particularly those that include fore-
casts of heavy convective rain, contain features (such as
pixel clusters or cells) that can easily be identified as sepa-
rate objects, with grid values in a specific cell being highly
correlated. These identifiable features certainly vary from
being different in intensity, and a simple way of quantifying
uncertainty in nowcasts would be a pixel by pixel compari-
son (of intensity). Although simplistic, this approach does
not account for other effects such as rotation, scale and
location changes that alter the intensities of grid points.
For an object-based verification of precipitation forecasts,
see for example Davis et al. (2006).

In essence, the purpose is to assess differences between
the observed image, zT+s, of size K · L, and the M nowcast
realizations from a distribution of predictions that can be
represented by yð1ÞTþs; . . . ; yðMÞTþs. That is, the aim is to assess
how well each prediction matches the actual image. Typical
approaches to this verification problem utilize all intensities
to create a penalty function that measures the error. For
example, Ebert and McBride (2000), considered the usual
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quadratic penalty function between the truth and the ith
forecast as

SSðiÞtot ¼
1

KL
ðvecðzTþsÞ � vecðyðiÞTþsÞÞ

0ðvecðzTþsÞ � vecðyðiÞTþsÞÞ;

ð1Þ
where vec(X) denotes the vector with the columns of the
matrix X stacked. The authors proposed a further decompo-
sition utilizing a shifted forecast that accounts for changes
in location and average intensity. Other event-based verifi-
cation techniques can be found in Ebert et al. (2004).

Herein, we propose a penalty function that accounts for
all effects of location, dilation and rotation separately, as
well as the difference in levels of intensity, that enjoys a
great reduction of dimensionality. The problem with using
all intensities (apart from high dimensionality) is that such
approaches cannot identify specific cells in an ensemble
that may be of particular interest to the forecaster. The
fact that from nowcast to nowcast we may have a different
number of cells moving across the area in comparison with
the observed, dictates that a method of verification should
penalize a forecast on a cell-by-cell basis.

Several verification tasks naturally arise, including the
development and implementation of cell identification algo-
rithms, which we discuss first.
Cell identification within nowcasting ensemble
members

We first clarify how we may identify corresponding cells be-
tween the observed truth and forecasted ensemble mem-
bers (or between any two ensemble members). This
problem has not been addressed before in the hydrometeo-
rological literature, and provides researchers with a novel
approach to verification as well as forecasting. Assume that
each ensemble member has Ni > 0, identifiable cells (clus-
ters of intensities), where i = 1,2, . . . ,M, denotes the
ensemble member, such that in a grid of K · L pixels, we
could have Ni taking values from 0 (no precipitation) to KL

4
,

assuming K and L even. We will consider clusters of four
or more pixels as valid cells. Also notice that we do not con-
sider the case of forecasts with no cells.

To provide a mathematical model for cells in each
ensemble member, for each one of the Ni identifiable cells,
we first obtain a centroid on the grid, denoted by ðcijx ; cijy Þ,
j = 1,2 . . . ,Ni, the jth cell within the ith ensemble member,
and x and y the horizontal and vertical axis. Thus, cijx takes
values in {1,2, . . . ,L} while cijy takes values in {1,2, . . . ,K}.
For simplicity, we may assume that the lower left corner
of the grid is the point (0,0), for all i and j. Once a centroid
has been identified, a radial is drawn that starts at the
centroid and crosses the cell’s edge at some point(s). We
consider a set of fixed angles hl 2 H ¼ hl 2 ½0; 2pÞ :f
hl ¼ 2pl

A ; l ¼ 0; 1; 2; . . . ;A� 1g, with A taking values from 1
to 360, and we obtain the radial distance from the centroid
to the edge along the lth angle, denoted by rijhl . Typically,
one would choose a value of A� 360 to reduce dimension-
ality. Clearly, for convex cells we will obtain a complete
description of the shape of the cell (only one edge point),
while for non-convex cells, we choose rijhl to be the largest
distance among such distances. This means that concave
areas, or holes, may be included in the cell parameteriza-
tion, but it ensures that no parts of the cell are ever lost.

Since we want to reduce the dimensionality of the prob-
lem, without losing vital information, the intensity of a cell
should be represented by a small number of summary statis-
tics of intensity. For example, we choose three values that
summarize intensity in a cell, namely the average, the low-
est and the highest intensities, denoted by cijavg; c

ij
min and

cijmax, respectively.
Thus, each ensemble member yðiÞTþs, is described as a col-

lection of Ni cells, where each cell is described by an (A + 5)-
dimensional vector Sij ¼ ðcijx ; cijy ; c

ij
min; c

ij
max; c

ij
avg; r

ij
h0
; . . . ; rijhA�1Þ;

j ¼ 1; 2; . . . ;Ni (cell number), i = 1,2, . . . ,M (ensemble mem-
ber number), which contains a parameterization of the cell
in terms of centroid coordinates, three intensity measures
and values of centroid-edge distance for A different angles.
Hence, from the original dimension of the realizations being
M · K · L we have a dimensionality of d ¼ ðAþ 5Þ

PM
i¼1Ni,

where Ni 6
KL
4 . Although at first glance, the upper bound

for the new dimension of the problem appears to be large,
there are usually only a small number of observed cells
per ensemble member, and hence there is a great reduction
in dimension using this approach.

Some discussion is in order about the actual selection
process of the cells we use to describe each ensemble mem-
ber. Typically, meteorologists have a strong sense of what
intensity level is representative of the weather phenomena
of interest, and more precisely, they can provide a thresh-
old value. Intensities below this value indicate precipitation
that is not significant in terms of severe weather or heavy
precipitation. Values above the threshold are of extreme
importance in short-term forecasting, as they may indicate
cells of imminent danger to public safety. Therefore, by
consideration of the physical process underlying the rela-
tionship between the observed radar reflectivity and storm
characteristics (precipitation rate, hail size) a suitable
threshold can be selected that we will call F.

Now all values below F are set to the minimum value ob-
served. A boundary algorithm is then applied to the result-
ing image, that yields the grid coordinates of each cell.
Once we have identified each cell’s coordinates on the
plane, the aforementioned approach is used to obtain the
(A + 5)-dimensional vectors that describe each cell in the
ensemble.
Cell correspondence between ensemble members

There are several ways in which cell correspondence can be
accomplished. Herein, we will consider matching cells
based on either their location (centroid based), or their
shape differences (Procrustes matching).

Assume that the true image at time T + s contains N cells
described by vectors

Sj ¼ ðcjx; cjy ; c
j
min; c

j
max; c

j
avg; r

j
h0
; . . . ; rjhA�1Þ; ð2Þ

j = 1,2, . . . ,N. Since the ensemble member might have fewer
(Ni < N) or more (Ni > N) cells than the true image, the fore-
cast is inappropriate and should be penalized appropriately.
Even in the case of Ni = N, the prediction maybe be unac-
ceptable depending on the values of the vectors of the cells
involved. For a perfect prediction, we should have Ni = N,



1 In Greek mythology, Damastes (which means ‘tamer’ in Greek),
was a robber who operated on the road from Eleusis to Athens. He
used to go by the name Procrustes, and he would offer travellers a
bed to rest and sleep. Once asleep, he would fit them to the bed by
stretching them if they were too short, or cutting off their limbs if
too tall. In our context, we can think of the bed as the shape of an
object and the traveller as the shape of the object that needs to be
translated, dilated and rotated in order for it to fit as closely as
possible to the bed.
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and Sij = Sj, for all j = 1,2, . . . ,N, which may not occur in real
applications. In this case, a forecast with fewer or more
identifiable cells from the truth is penalized naturally by
the approach we undertake, namely, a cell from the truth
is always forced to match with a cell from the forecast.

In the context of verification, we know exactly the true
number N of cells in the true image. Thus, a natural estima-
tor of the cell Sj is the mean vector of all the particular cell
vectors from each of the ensemble members,bSj ¼ 1

M

PM
i¼1Sij; j ¼ 1; 2; . . . ;N. The obvious drawback with

these estimators is that, depending on how the cell indices
are attached to a cell, it is possible to compute the wrong
cells even in the perfect prediction case. Hence, indices
are assigned to cells according to how close, in some sense,
the cells are to each other. That is, we order the systems in
the ensemble members depending on their proximity to the
cells in the true image. For example, taking only location in
mind, if the true image contains only one cell S1 and
an ensemble member has two, then we would define them
as S11 and S12, provided that ðc1x � c11x Þ

2 þ ðc1y � c11y Þ
2
<

ðc1x � c12x Þ
2 þ ðc1y � c12y Þ

2.
In order to take into consideration the effects of loca-

tion, dilation and rotation in each cell, we consider a statis-
tical shape analysis framework (e.g., Bookstein, 1991;
Stoyan and Stoyan, 1994; Dryden and Mardia, 1998; Micheas
and Dey, 2003; Micheas and Dey, 2005; Micheas et al.,
2006). To accomplish this, the coordinates of the cells are
rewritten using complex coordinates, by considering the
grid as being the first quadrant of the complex plane. Thus,
since any cell’s boundary coordinates can be described
by an A · 2 matrix of x–y coordinates ðxjhl ; y

j
hl
Þ; l ¼ 0;

1; . . . ;A� 1, where xjhl ¼ cjx þ rjhl sin hl, yj
hl
¼ cjy þ rjhl cos hl,

the x and y grid coordinates of the boundary point on the
axis of angle hl, of the jth cell in the true image, and
xkjhl ¼ ckjx þ rkjhl sin hl, ykj

hl
¼ ckjy þ rkjhl cos hl, the corresponding

grid coordinates for the jth cell in the kth ensemble mem-
ber, then the jth true cell is described by the vector of com-
plex numbers

zj ¼ ðxjh0 þ iyj
h0
; . . . ; xjhA�1 þ iyj

hA�1
Þ; ð3Þ

and similarly for the jth cell in the kth ensemble member we
define

zkj ¼ ðxkjh0 þ iykj
h0
; . . . ; xkjhA�1 þ iykj

hA�1
Þ: ð4Þ

We refer to zj and zkj as the icons of the storm systems. We
define zjH ¼ Hzj, the ‘‘Helmertized’’ landmarks of zj, where
H stands for the last ðk� 1Þ-rows of the Helmert matrix, a
special matrix of independent contrasts (see Dryden and
Mardia (1998, p. 34)) that help remove location from zj.
These rows of the matrix form an orthonormal basis. In or-
der to remove scaling effects, we simply take the standard-

ized version of zjH, i.e., we define zjs ¼
zj
H

kzj
H
k
, where

kzjHk
2 ¼ zj�H z

j
H, and zj�H denotes the conjugate transpose of

zjH. We call zjs the pre-shape of the shape zj. The pre-shape
can be thought of as the standardized shape of the cell, in
terms of both location (the average of the landmarks is
zero) and scale (size is one).

Hence, let zjs and zkjs be the corresponding pre-shapes of
zj and zkj. Then we define an ordering of pre-shapes (cells)
in each ensemble member. Within the kth ensemble mem-
ber we will use the jth cell to estimate the true jth cell
when

zkjs ¼ argmin
zkls

dðzjs; zkls Þ ð5Þ

for l = 1,2, . . . ,Ni and where dðzjs; zkls Þ ¼ ðzjs � zkls Þ
�ðzjs � zkls Þ

and arg min denotes the argument that minimizes the dis-
tance. Notice that for the ordering of the cells in each
ensemble member we only take into consideration shape
information and not intensity this way. We can easily incor-
porate intensity using distances between the intensity mea-
sures cjmin; c

j
max, and cjavg, but as far as identifying the

corresponding cells between truth and forecast, intensity
is not essential. Thus, when it comes to application of the
methods, the first task is to apply the cell identification ap-
proach above to obtain the proper pairing between systems
in realizations and corresponding systems in the true
images.

Shape-analysis techniques in ensemble member
verification

Our goal is to extract shape and intensity information from
each cell in the true image and its corresponding estimator
from the kth ensemble member, and then penalize the now-
cast using these measurements. In essence, we will esti-
mate the amount of the error associated with dilation,
rotation and translation of a forecast cell to a cell from
the truth. To accomplish this, we first assume that every
cell Sj (or z

j) in the true image, is predicted by the jth cell
from the kth ensemble member, namely Skj (or zkj),
j = 1,2, . . . ,N, k = 1,2, . . . ,M. In the case where a forecast
contains fewer cells than the truth then a cell might be used
more than once to estimate a truth cell, and similarly in the
opposite case. We treat the problem of estimating intensity
and that of shape separately.

In order to capture shape variation (translation, dilation
and rotation) we employ a ‘‘Procrustes’’1 approach. Dryden
and Mardia (1998) provide a good overview of Procrustes
methods.

Suppose that there exist a number of dilation parameters
rjk > 0, rotation parameters ujk > 0, and translation parame-
ter complex vectors bjk = (bjk0, . . . ,bjkA�1), (often all the
coordinates of bjk are equal to a single complex parameter
b0
jkÞ, such that we may dilate, rotate and translate a given

storm system from some ensemble member and obtain
(recreate) the corresponding true storm system. The trans-
formations required to match a storm in an ensemble mem-
ber to an actual storm, provide the verification measure.
That is, zj ¼ rjkeujkizkj þ bjk þ ej, or
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xjha þ iyj
ha
¼ rjke

ujkiðxkjha þ iykj
ha
Þ þ bjka þ eja;

a ¼ 0; 1; . . . ;A� 1; j ¼ 1; 2; . . . ;N; k ¼ 1; 2; . . . ;M;
ð6Þ

where eja is an error term from (typically) the complex nor-
mal distribution, with mean zero, and variance
r2
j ¼ r2

j1 þ r2
j2i. Thus, there are N complex regression equa-

tions that can be used to estimate the parameters of inter-
est for each one of the N true systems. The least square
estimators of rjk, ujk, and bjk, can be denoted by crjk ; cujk,
and cbjk. In a statistical shape analysis context, Eq. (6) is
the regression equation used in Procrustes Analysis, where
the two shapes are matched through similarity transforma-
tions, and the differences between zj and the fittedczjk, indi-
cate the magnitude of the difference in shape between zj

and zkj. The estimator

czjk ¼ cbjk þcrjkeicujk zkj; ð7Þ

is often referred to as the Full Procrustes fit (superimposi-
tion) of zkj onto zj. Now it can be shown that

crjk ¼ jðz
kj
c Þ
�zjcj

ðzkjc Þ�zkjc
;

cujk ¼ argððzkjc Þ
�zjcÞ;

cbjk ¼ zj �crjkeicujk zkj; or

cb0
jk ¼

1

A� 1

XA�1
a¼0
ðxkjha þ iykj

ha
Þ �

crjkeicujk

A� 1

XA�1
a¼0
ðxjha þ iyj

ha
Þ;

ð8Þ

where

zkj ¼ 1

A� 1

XA�1
a¼0
ðxkjha þ iykj

ha
Þ1;

zj ¼ 1

A� 1

XA�1
a¼0
ðxjha þ iyj

ha
Þ1;

ð9Þ

are the natural centroids of each cell, 1T = [1, . . . ,1], and
zkj
c ¼ zkj � zkj; zjc ¼ zj � zj, the centered cells. Notice that

the Procrustes residual sum of squares (RSS) between zj

and zkj (i.e., when estimating the jth true cell with the
jth cell from the kth ensemble member), is defined as

RSSjk ¼ ðzj �czjkÞ�ðzj �czjkÞ: ð10Þ

Now, if the forecast cell fits perfectly the corresponding true
cell (i.e., crjk ¼ 1; cujk ¼ 0, and cbjk ¼ 0, hence zj = zkj), then
no mistake was made in estimating this cell by the forecast
and thus the Procrustes RSS is zero as expected. The overall
Procrustes RSS for the kth ensemble member becomes

RSSk ¼
XN
j¼1
ðzj �czjkÞ�ðzj �czjkÞ

¼
XN
j¼1
ðzj � cbjk �crjkeicujk zkjÞ�ðzj � cbjk

�crjkeicujk zkjÞ: ð11Þ

Moreover, an overall estimator of the jth true cell based on
all k realizations (i.e., an estimator based on the ensemble)
is given by

ezj ¼ 1

M

XM
k¼1

czjk : ð12Þ
Penalty function between ensembles

To obtain an objective penalty function we first penalize
forecasts for their deviations from the truth, according to
the following quadratic function that accounts for location,
dilation and rotation effects (together), as well as intensity
effects between cells from the truth and ensembles. The
penalty function between the truth and the kth ensemble
member is defined as

DðzTþs; y
ðkÞ
TþsÞ ¼

XN
j¼1
ðzj � brjkebujk izkj � bbjkÞ�ðzj � brjkebujk izkj � bbjkÞ

þ
XN
j¼1
ðcjavg � ckjavgÞ

2 þ
XN
j¼1
ðcjmin � ckjminÞ

2

þ
XN
j¼1
ðcjmax � ckjmaxÞ

2 ¼ RSSk þ SSðkÞavg þ SSðkÞmin þ SSðkÞmax;

ð13Þ

where the components RSSk, SS
ðkÞ
avg; SS

ðkÞ
min and SSðkÞmax penalize

differences in shape, average, minimum and maximum
intensities, respectively. Several similar penalty functions
may be created that utilize shape and intensity information
from all forecast realizations.

Now, using the estimators crjk ; cujk, and
cb0
jk, from the full

Procrustes fit on the jth cell from the kth ensemble member
to the jth true cell, we can create a penalty function that
penalizes an ensemble member according to the individual
errors in location, rotation and dilation. Within the kth
ensemble member define

SSðkÞshape ¼ SSðkÞloc þ SSðkÞrot þ SSðkÞscale

¼
XN
j¼1

cb0
jk

2

þ
XN
j¼1
bu2

jk þ
XN
j¼1

br2jk; ð14Þ

where SSðkÞloc; SS
ðkÞ
rot and SSðkÞscale denote the differences (over all

cells within the ensemble member) of location, rotation and
dilation, respectively. Then MSSðkÞshape ¼ 1

N
SSðkÞshape, denotes the

average effects of location, rotation and dilation for the kth
ensemble member, and hence a new penalty function is de-
fined by

D�ðzTþs; y
ðkÞ
TþsÞ ¼ MSSðkÞshape þ SSðkÞavg þ SSðkÞmin þ SSðkÞmax

¼ 1

N
SSðkÞloc þ

1

N
SSðkÞrot þ

1

N
SSðkÞscale þ SSðkÞavg

þ SSðkÞmin þ SSðkÞmax: ð15Þ

Both penalty functions can be used to assess how well an
ensemble member is performing in estimating the truth.
The dimensionality reduction is clearly great, but perhaps
the most interesting consequence of these measures is that
it allows an experimenter to choose the ‘‘best’’ ensemble
member forecast among a set of forecasts being compared,
based on several characteristics including location, rotation
and scale effects and average, minimum or maximum inten-
sities in cells. Eqs. (13) and (15) provide overall measures of
the differences between the truth and a forecast. For a per-
fect forecast, DðzTþs; y

ðkÞ
TþsÞ should be zero, by the very def-

inition of the quantities in (13), since in this case RSSk,
SSðkÞavg; SSðkÞmin and SSðkÞmax, would all be zero. Since we aim to
break down the error due to differences in shape between
truth and forecast, we take for each forecast the average
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differences across all cells in location, rotation and scale
(1
N
SSðkÞloc,

1
N
SSðkÞrot, and

1
N
SSðkÞscale). A perfect forecast in this case

would yield values close to zero for 1
N
SSðkÞloc and 1

N
SSðkÞrot, and

close to one for 1
N
SSðkÞscale. Hence, D�ðzTþs; y

ðkÞ
TþsÞ should be

close to one for a perfect forecast.

Nowcast schemes and data

Each of the nowcasting schemes used in this study works on
a different principle. For this reason they are likely to pro-
duce nowcasts that vary in their treatment of precipitation
fields containing structures of different shape, spatial scale,
and organization and that move in more or less regular
ways. In each case, for the verification system to be ap-
plied, the nowcast scheme must generate forecast products
in the form of a pseudo-reflectivity grid.

The Warning Decision Support System-Integrated Infor-
mation (WDSS-II) has been developed by the National Severe
Storms laboratory (NSSL). Now in its second major version,
it contains two cell tracking algorithms: The Storm Cell
Identification and Tracking (SCIT) system (Johnson et al.,
1993) and the K-Means cluster analysis scheme (Lakshmanan
et al., 2003). The first of these is a centroid tracking scheme
that produces motion vectors for identified cells. The latter
uses a variable cell clustering technique to identify motion
of single cells or groups dependent upon reflectivity thresh-
olds set by the user. This latter scheme provides forecasts in
the form of pseudo-reflectivity images and was therefore
suitable for use in this project.

The spectral prognosis (SPROG) nowcasting system was
developed at the Australian Bureau of Meteorology Research
Centre (BMRC) and uses a spectral decomposition technique
to selectively identify and track features of different spatial
scales. Smaller features are decayed in forecast time in
keeping with the knowledge of persistence and predictabil-
ity of rainfall structures in time (Seed, 2003). The resulting
forecast spectral components are then recombined into a fi-
nal nowcast product in the form of a reflectivity image.
Notably, the efficiency of this scheme allows it to be run
operationally in an ensemble member stochastic format as
is currently being tested in the Met Office (Pierce et al.,
2005). For this study this was not done.

The University of Missouri Bayesian Hierarchical Model
(BHM) uses a discretized integrodifference equation ap-
proach to forecast pixel-by-pixel motion and intensity of
reflectivity fields (Xu et al., 2005; Fox and Wikle, 2005).
The Bayesian nature of the model allows one to obtain pre-
diction distributions, and thus, ensemble members. For this
study we extracted 20 ensemble members from the poster-
ior distribution sample. The BHM used for a demonstration
in this study runs on a 32 · 32 pixel grid because it is ineffi-
cient and currently would not produce a viable ensemble
member in a reasonable time if run on a larger grid. We
know that this is not adequate as an operational forecast
scheme and are currently working on an improved version
that will provide nowcasts on a larger grid. This paper deals
with the verification issue, for which production of ensem-
ble member forecasts was required. The effectiveness of
the verification is not impacted by the size of the grid and
would be the same for a larger grid and number of cells.
Description of the BHM, including its limitations, can be
found in Xu et al. (2005) and Fox and Wikle (2005).
The verification technique explored in this paper was
developed to work with ensemble member forecast sys-
tems, but is not restricted to these and can be used for
any spatial forecast field whether it is an ensemble member
or not. The concept is not only to provide objective statis-
tical measures of overall forecast skill, but also to identify
individual ensemble member performance such that differ-
ent treatments of the data or configurations of the forecast
model can be assessed. The separation of errors into the
various components should provide a tool whereby the
cause of the error can be identified and improvements can
be made to the nowcast system based on this knowledge.
The verification scheme can be run in real time such that
assessments of nowcast performance can be made and fore-
casters could then have confidence in the products or have
the ability to choose between different products (even from
different systems) depending on relative performance
statistics.

The example case was taken using data from the San
Antonio, TX area on 5 July 2002. This day saw a series of in-
tense convective storm cells track over the area resulting in
some flash flooding. The individual storms were disorga-
nized and their tracks influenced by the proximity of the
coast and complex orography inland. Although the storms
were not severe, forecast knowledge of their tracks would
have helped in forecasting small catchment response to
heavy rainfall.

In order to ensure comparability of the nowcast schemes
and, in particular, the performance of the verification, each
scheme was run on the same data. In the example case, this
includes NEXRAD LEVEL II data reduced to a 32 · 32 grid of
4-km resolution pixels from a mosaic of three radars includ-
ing Corpus Christi, TX (KCRP), Brownsville, TX (KBRO) and
San Antonio, TX (KEWX) to capture the event. Although this
resolution does not allow any of the nowcast schemes to
perform optimally, it does allow for the BHM scheme to
be run in full ensemble mode as a test of the verification
scheme’s handling of a multirealization product.
Application of cell identification and
verification methods

Initially, we considered nowcasts from the BHM, WDSS, and
SPROG models based on observed radar reflectivities at 10-
min intervals from 0130 UTC to 0220 UTC. Specifically, we
considered nowcasts at 10-min intervals up to 60 min:
0230 UTC to 0320 UTC. All forecasts were based on reflectiv-
ity images with dimension 32 by 32 pixels. Note, since the
BHM model provides ensemble members (20 in this applica-
tion), the results presented relate to the posterior mean
nowcast, unless stated otherwise.

Fig. 1 shows the truth and forecasts from the three mod-
els for a 10-min lead-time nowcast verifying at 0230 UTC.
The left side of this figure shows the full reflectivity field
for the truth and various nowcasts, and the right side shows
the corresponding images after intensities lower than
30 dBZ are removed and the boundary finding algorithm
has been applied. The verification methodology then deter-
mines the number of ‘‘cells’’ in the truth image, based in
this case on 20 angles. For example, the truth image at
0230 UTC is found to contain two cells, with corresponding



Figure 1 (a) Truth at time 0230 UTC. (b) Posterior mean from
the BHM forecast for time 0230 UTC, lead 10 min. (c) WDSS
forecast at time 0230 UTC, lead 10 min. (d) SPROG forecast at
time 0230 UTC, lead 10 min.

Cell identification and verification of QPF ensembles using shape analysis techniques 111
x-, y-coordinates, minimum, average, and maximum
intensities:

True cell 1 : 8:3;�27:8; 30:4; 36:3; 52:1:
True cell 2 : 11:6;�6:9; 30:0; 37:0; 50:6:

Similarly, cells are also estimated for the corresponding
nowcast images. These cells, relative to the truth cells at
0230 UTC, are shown for each nowcast model in Fig. 2. To
quantify the relationship between the cells for the truth
and nowcasts, we consider verification summaries. Specifi-
cally, we consider the total Procrustes residual sum of
squares (RSS) and the sum of squares of the intensities
(SStot). A summary of these statistics for the nowcasts veri-
fying at 0230 UTC to 0320 UTC (10-min lead time nowcasts
ending at the times) is given in Table 1 where only location
is used for cell correspondence between truth and nowcast,
as discussed in Section ‘‘Cell correspondence between
ensemble members’’. Although the primary purpose here
is to demonstrate the methodology, it is interesting to
compare the different nowcast methods based on these
measures. In terms of the intensities (SStot), up through
40-min lead times, BHM performs best, followed by SPROG
and WDSS. For 50- and 60-min lead times, SPROG performs
best, followed by BHM and WDSS. Regarding the total Pro-
crustes residual sum of squares, for lead times of 20–
50 min, WDSS performs best, followed by SPROG and BHM.
At 10-min leads, SPROG is best followed by BHM and WDSS,
and at 60 min, BHM is best followed by WDSS and SPROG.
Table 2 shows the same RSS statistics but for the case where
Procrustes residuals are used to establish correspondence
between cells from the truth and nowcasts (as discussed
in Section ‘‘Shape-analysis techniques in ensemble member
verification’’). The results are somewhat different, with
BHM showing the best performance for medium range lead
times.

We now look more closely at a specific verification time,
0340 UTC, for lead times of 10–60 min. Note that these re-
sults are based on a threshold intensity of 20 dBZ and 15 an-
gles. This choice, although somewhat subjective, is based
on the ability of the cell detection algorithm to identify spe-
cific cells in the truth image. The flexibility of choosing dif-
ferent thresholds and number of angles is a strength of the
methodology. Table 3 shows the summary statistics for this
case when only location is used for cell correspondence. In
this example, SPROG typically performs best at shorter lead
times, followed by BHM and WDSS. There seems to be some
indication that BHM tends to perform better at longer lead
times. Table 4 shows the comparable verification results
when the Procrustes residuals are used for cell correspon-
dence. Using this measure, the BHM performs the worst at
the early lead times while the WDSS is best, followed by
SPROG. At the longer lead times, SPROG is best, followed
by BHM and WDSS.

Recall that a strength of the Procrustes verification ap-
proach is that the overall sum of squares statistics can be
further decomposed relative to intensity, shape and scale.
Tables 5 and 6 show sum of squares for the minimum,
average, and maximum intensity, as well as scale and
location for the case when cell correspondence is based
on location only, and Procrustes residuals, respectively.
These results suggest that each nowcast system has its



Figure 2 (a) Comparing truth to BHM posterior mean ensem-
ble, time 0230 UTC. (b) Comparing truth to WDSS ensemble
member, time 0230 UTC. (c) Comparing truth to SPROG
ensemble member, time 0230 UTC.
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strengths and weaknesses. Clearly, more case studies
should be considered before one can say with confidence
that one method is performing consistently well or poor in
any one area. However, the Procrustes-based statistics
provide a promising suite of measures for such a
comparison.

As demonstrated by the above results it is possible to
find an over all error for each nowcast ensemble member
and time-step. More interestingly, it is possible to express
this error through contributions due to location (SSloc),
dilation (SSscale), and intensity (SSmax, SSmin, SSavg). Not
shown in the above tables are errors due to rotation
(SSrot), as in this case all such errors were negligible. Such
a decomposition allows one to determine how each model
is performing in a variety of ways. For example, from
Tables 5 and 6 it is seen that WDSS outperforms both
SPROG and BHM in terms of intensity, but is itself clearly
outperformed in terms of location, particularly at longer
lead-times. This is not surprising given that SPROG and
BHM have in-built tendencies to smooth high intensities,
whereas WDSS retains current patterns. However, SPROG
and BHM seem to account well for the combination of
advection and propagation of precipitation, whereas WDSS
has a simpler advection function. There is no evidence
that the superior location forecasts come at the expense
of dilation, i.e., that location is improved simply by
forecasting cell growth, as all the dilation errors are
similar.

A further comment is in order about the robustness of
the methodology. Sensitivity analysis was performed with
respect to both the choice of threshold and the number of
angles used. Increasing the number of angles, tends to give
smoother estimates of cells, but still in some cases they can
be more star shaped. Using a very large number defeats the
goal of dimension reduction of the problem. Meanwhile,
using only a few, say five, gives crude estimates of the cells
in the forecasts. We found that 10–20 angles seem to work
quite well in most cases. The choice of threshold is much
more subjective. It is expected that the expert meteorolo-
gists have a well-developed knowledge of the intensity
range that they need to observe, in order to identify a se-
vere storm system. Nonetheless, we investigated both high
and lower intensities.

In general, the penalty functions are of similar magni-
tudes for small changes in threshold and number of angles.
We reached the same results, when it came to small or
large changes in the number of angles. However, this
was not the case with the threshold value. Greatly increas-
ing the threshold, sometimes yields no identifiable cells in
some forecasts. Very low thresholds tend to yield very
large cells. Changes such as these, greatly affected both
Procrustes as well as the intensity sum of squares. Since
this is a subjective choice, we advise a careful selection
of threshold that satisfies the needs of the experimenter
and the analysis.

There is no reason why one particular forecast should
produce the best verification when the measures assess dif-
ferent attributes of the forecast. Indeed one major advan-
tage of this verification procedure is that it can identify
which forecast (or ensemble member) produces the most
accurate representation of the various characteristics of
the storm. For ensembles that are made up of members



Table 1 Results per time period for all cells, using location only for cell correspondence between cells from truth and forecast

Time period SStot RSS # of cells in truth

WDSS SPROG BHM WDSS SPROG BHM

0230 UTC 25.6253 20.2261 19.459 96.5847 37.9386 48.5222 2
0240 UTC 51.4803 45.3927 43.5694 75.3826 92.3019 139.9885 3
0250 UTC 78.85 66.0539 61.7467 52.929 68.2372 69.6679 3
0300 UTC 93.5189 74.5149 72.0801 33.2543 44.0658 39.3487 3
0310 UTC 98.4979 69.8259 76.5728 51.9803 60.6706 68.8061 4
0320 UTC 111.2577 74.439 88.7457 34.6858 51.8965 29.8134 4

Ten-minute lead time nowcasts ending at the times.

Table 2 Results per time period for all cells, using Procrustes residuals for cell correspondence between cells from truth and
forecast

Time period RSS # of cells in truth

WDSS SPROG BHM

0230 UTC 113.4805 36.5387 71.2615 2
0240 UTC 68.9181 75.3691 89.4667 3
0250 UTC 69.5937 75.2025 61.2549 3
0300 UTC 60.4894 53.9560 44.9139 3
0310 UTC 69.4926 59.6525 47.7261 4
0320 UTC 50.3868 45.7965 54.3680 4

Ten-minute lead time nowcasts ending at the times.

Table 3 Verification results for the 0340 UTC time period, using location only for cell correspondence between cells from truth
and forecast

Verifying 0340 UTC
lead time (min)

SStot RSS

WDSS SPROG BHM WDSS SPROG BHM

10 32.4169 30.3376 32.9085 42.8283 41.9378 39.1913
20 49.1405 36.3965 41.4114 36.2465 50.5711 48.9398
30 62.829 44.9979 51.2791 49.8125 46.7081 47.9163
40 90.9051 51.7074 56.2427 65.1625 44.8942 54.5747
50 100.567 63.9995 59.6349 93.3849 59.5873 58.2467
60 118.645 64.8223 62.6202 525.2878 59.0587 89.6373

Table 4 Verification results for the 0340 UTC time period, using Procrustes residuals for cell correspondence between cells from
truth and forecast

Verifying 0340 UTC
lead in time (min)

RSS

WDSS SPROG BHM

10 30.4847 34.6459 35.3245
20 27.3061 29.2164 30.5256
30 25.0882 35.4505 41.6773
40 45.1607 33.7056 40.7563
50 70.4598 46.1167 51.2568
60 525.2878 58.6487 66.3705
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generated by different models (e.g., models containing
different convective parameterization schemes or, in the
nowcasting realm, different advection/dispersion formula-
tions) the decomposition of the error may allow a determi-
nation of which model is handling the situation best. This
would best be achieved in a post-event study rather than



Table 5 Verification results for the 0340 UTC time period for individual components, using location only for cell correspondence
between cells from truth and forecast

Verifying 0340 UTC
lead time (min)

Breaking down intensity and shape to specific elements

10 SSmin SSavg SSmax
1
N SSscale

1
N SSloc

WDSS 0.48 49.17 344.99 0.49 61.118
SPROG 0.46 26.42 396.15 0.83 4.17
BHM 0.16 18.12 429.01 0.83 10.84

20
WDSS 0.21 37.3 703.66 0.77 26.82
SPROG 0.17 71.78 805.37 1.36 10.43
BHM 1.44 64.39 810.4 0.84 8.2

30
WDSS 0.5 82.1 566.9 0.5 97.2
SPROG 1.0 104.6 991.6 1.4 9.5
BHM 0.9 106.9 1074.5 0.9 5.0

40
WDSS 1.3 39.8 345.2 0.5 106.9
SPROG 1.0 149.7 1177.5 0.9 5.7
BHM 1.0 147.2 1211.4 0.9 5.3

50
WDSS 1.0 54.2 373.2 0.5 115.4
SPROG 1.1 212.0 1602.7 2.4 86.1
BHM 1.0 204.7 1573.5 1.8 93.9

60
WDSS 0.9 25.4 185.6 0.2 169.2
SPROG 0.5 172.0 1401.8 0.7 36.6
BHM 0.9 155.3 1258.6 0.4 84.0
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as a real-time application, and could then be used to assess
model applicability to storm type in an analogous way to
that described in Grams et al. (2006). However, the verifica-
tion scheme is efficient enough to provide a variety of real-
time verification measures. The ’best’ forecast can still be
identified from the total error, but this may depend on
the judgment of the forecaster as to what particular aspect
of the storm is the most important and would require a suit-
able means of weighting the various components of the
total error appropriately.
Concluding remarks

This paper introduces a new approach to assessing errors in
forecast reflectivity fields that is not limited to the short-
period forecasts illustrated herein. One can also envision a
number of ways in which the verifications can be refined,
either systematically, by an individual forecaster, or on an
event by event basis. One refinement may be to apply
weighting factors to each error term prior to the summa-
tion. If one wished to stress storm location as the most
important forecast parameter then one could add weight
to this term, increasing the penalty for a poor prediction
of storm location. Alternatively one may increase the
weighting in SSmax to reward forecasts that retain high-
intensity features that may accurately represent areas of
severe weather, or the error in shape may reflect the ability
of the forecast to maintain or predict structures such as
bows and hook-echoes that are indicative of threats of
downburst or tornado.

As can be seen in the purely mathematical treatment
presented herein, it is apparent that the different error
terms can result in numerical values that are orders of mag-
nitude apart. Although this indicates the relative values of
the errors it makes intercomparison of the different error
terms difficult and it may be desirable to normalize the er-
ror values of each source. This could enable one to compare
the different components and identify from one model to
the next, or one ensemble member to the next, how well
each is dealing with the various morphological factors in
the storm’s behavior.

Finally, there are many avenues of investigation and
potential refinements that can be made to the verification
methodology. It is planned that further research will be
undertaken using the nowcast schemes mentioned here
and others, on a number of cases representing a variety
of meteorological scenarios. Furthermore, we plan to
implement the verification as the standard in our own
nowcast scheme developments as we consider detailed
performance evaluations of the BHM that reveal how it
handles the different aspects of precipitation forecasting



Table 6 Verification results for the 0340 UTC time period for individual components, using Procrustes residuals for cell
correspondence between cells from truth and forecast

Verifying 0340 UTC
lead time (min)

Breaking down intensity and shape to specific elements

10 SSmin SSavg SSmax
1
N SSscale

1
N SSloc

WDSS 0.64 34.65 483.36 0.38 112.83
SPROG 0.07 39.16 455.82 0.36 113.61
BHM 0.08 52.79 477.52 0.38 112.52

20
WDSS 0.26 66.72 874.72 0.62 95.49
SPROG 1.11 57.88 653.08 0.34 112.78
BHM 1.09 92.75 765.02 0.36 109.17

30
WDSS 0.83 48.92 575.37 0.44 117.99
SPROG 1.11 86.66 808.88 0.36 112.89
BHM 0.99 89.77 987.43 0.73 21.27

40
WDSS 0.5 28.8 479.7 0.5 127.6
SPROG 1.1 129.6 1004.8 0.4 112.5
BHM 1.1 118.8 960.7 0.4 108.4

50
WDSS 0.6 25.6 363.1 0.5 128.4
SPROG 0.9 124.9 1111.7 0.4 109.2
BHM 1.0 142.1 1171.1 0.4 108.7

60
WDSS 0.9 25.4 185.6 0.2 169.2
SPROG 1.0 149.6 1246.4 0.5 54.4
BHM 1.1 96.5 1028.1 0.3 113.3
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involved in a good prediction of location structure and
intensity.
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