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Abstract 
 

This report summarizes verification results for the Integrated Icing Diagnostic Algorithm 
(IIDA), which is designed to diagnose the existence of in-flight icing conditions aloft. The report 
was prepared by the Quality Assessment Group of the Aviation Weather Research Program’s 
Aviation Forecast and Quality Assessment Product Development Team. The purpose of the 
report is to summarize the quality of IIDA diagnoses, in anticipation of IIDA’s transition through 
the D4/D5 decision point of the Aviation Weather Technology Transfer process. 

 
The report includes (a) a brief summary of previous evaluations of IIDA and other in-flight 

icing forecasts and algorithms; (b) results from an intensive evaluation of IIDA diagnoses from 
winter 2000; and (c) results from ongoing operational verification of IIDA and other icing 
forecasts by the Forecast System’s Laboratory’s Real-time Verification System (RTVS). In all 
cases the IIDA diagnoses are evaluated using Yes and No pilot reports (PIREPs) of icing 
conditions. In most cases, the analyses focus on Yes reports of moderate-or-greater (MOG) icing 
severity. While the in-depth analyses considered forecasts and diagnoses during daylight hours 
only, the RTVS results included night-time hours as well.  

 
The IIDA diagnoses are compared to operational icing forecasts (AIRMETs) and to forecasts 

from two algorithms – NNICE and VVICE – which were developed at the Aviation Weather 
Center. In addition, some comparisons consider Liquid Water Content (LWC) forecasts from the 
Rapid Update Cycle numerical weather prediction system. Although the AIRMETs are quite 
different from IIDA in many ways (e.g., they are limited to a volume that can be defined in a 
textual message, and they are intended to depict icing conditions over a 6-h period), they are 
included in this evaluation as the operational standard that is available to users. IIDA produces 
both a General Icing and a Supercooled Large Droplet (SLD) field. Both fields consist of values 
of icing “potential” on a scale from 0 to 1 at each grid point. Most of the analyses focus on the 
General Icing field, with a few results presented for the SLD field. 

 
IIDA has been evaluated over a number of years (e.g., Brown et al. 1999). However, some 

previous evaluations were based on earlier versions of the algorithm. In general, it appears that 
the quality of the IIDA diagnoses has improved somewhat; in particular, differences between the 
verification statistics for IIDA and other forecasts are somewhat greater in recent years than was 
the case for earlier versions of the algorithm. A regional evaluation of IIDA suggests that IIDA is 
best at detecting icing conditions in the Great Lakes region and the Northeast, and somewhat less 
capable in the South; similar characteristics were noted for the AIRMETs (Kane et al. 2000). 

 
Results of the in-depth evaluation of IIDA for winter 2000 and the RTVS evaluations for 

winters 2000 and 2001 indicate that: 
• IIDA is relatively efficient at detecting icing conditions, with a probability of detection 

for MOG Yes reports [PODy(MOG)] of 0.75-0.85, and a corresponding probability of 
detection of No reports (PODn) between 0.6 and 0.7, depending on the IIDA threshold 
used, and a relatively small percentage (5-8%) of the total airspace impacted by the 
forecasts. AIRMETs captured similar proportions of Yes reports, while capturing a 
somewhat smaller proportion of No reports. AIRMETs were somewhat more efficient in 
terms of the area covered by the forecasts and somewhat less efficient in terms of the 
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volume of airspace covered; however, this result is at least partially related to the 
constraints on the form of the AIRMETs. 

• Overall, RTVS analyses – which considered icing diagnoses in both the day-time and the 
night – indicate that IIDA performance is somewhat better than NNICE and VVICE, and 
the AIRMETs, in comparisons of PODy, % Volume, and PODn. 

• IIDA diagnoses are skillful, as measured by their ability to discriminate between Yes and 
No icing situations.  

• PODy and PODn values for all of the forecasts and algorithms are somewhat variable 
from time-to-time. For example, for IIDA with a threshold of 0.25, the PODy(MOG) 
values for individual diagnoses range from about 0.2 to 1.0, with the middle 50% of 
values between 0.6 and 0.9. However, the volume covered by the IIDA diagnoses is quite 
consistent from time-to-time. RTVS evaluations of variations in the statistics from week-
to-week suggest that verification statistics for the three algorithms and the AIRMETs 
exhibit similar variations. PODy(MOG) values for the AIRMETs and VVICE decreased 
somewhat toward the end of the winter 2001 season, while the PODy(MOG) values for 
IIDA and NNICE remained somewhat more consistent throughout the season. 

• IIDA diagnoses perform fairly well as persistence forecasts out to about three hours. 
After that period, they are generally out-performed by the AIRMETs. 

• RTVS results stratified by altitude suggest that IIDA performs best at lower altitudes 
(15,000 ft and below) and that IIDA is better than the other algorithms and the AIRMETs 
at capturing No-icing conditions at all altitudes, while still maintaining a good 
PODy(MOG) value. 

• The SLD field is very efficient at capturing PIREPs reporting severe icing conditions. 
Although the PODy for severe reports is about 0.3, the diagnoses cover a very small 
volume, in comparison to the IIDA General Icing field, the LWC forecasts, and the 
AIRMETs. 

 
In summary, IIDA is skillful at diagnosing General Icing conditions, and the SLD algorithm 

is efficient at detecting severe icing situations. The algorithm is quite capable of discriminating 
between Yes and No icing conditions, and is efficient in limiting the airspace warned.  These 
verification analyses represent a comprehensive evaluation of IIDA over two icing seasons, and 
thus the results should be representative of most icing situations of concern.  

 
 
 

 3



1. Introduction 
 
The Integrated Icing Diagnostic Algorithm (IIDA) is an automated system to diagnose 

locations of icing conditions aloft. This system was developed by the In-flight Icing Product 
Development Team (IFIPDT) of the FAA’s Aviation Weather Research Program (AWRP; 
Sankey et al. 1997). The purpose of this report is to document the quantitative evaluations of 
IIDA that have been undertaken to verify the quality of IIDA diagnoses, in anticipation of the 
transition of this product through the D4/D5 decision point of the Aviation Weather Technology 
Transfer (AWTT) process. 

 

2. Approach 
 

IIDA has undergone extensive evaluation since its initial development began, and some of 
these analyses have been summarized in conference papers and reports. In these studies, the 
quality of IIDA diagnoses has been compared to the quality of diagnoses and forecasts produced 
by a number of other icing algorithms as well as the operational icing forecasts (AIRMETs) 
issued by the Aviation Weather Center (AWC; Brown et al. 1999). In addition, the algorithm has 
been evaluated in near real time since April 1998 by the Real-Time Verification System (RTVS) 
at NOAA’s Forecast Systems Laboratory (Mahoney et al. 1997), along with two other automated 
in-flight icing algorithms and the icing AIRMETs. Finally, over the last year, IIDA diagnoses 
from winter 2000 have been evaluated extensively by the Verification Group of NCAR’s 
Research Applications Program (RAP).  

 
Thus, the quality of IIDA diagnoses is considered from three different vantage points in this 

report: 
 
(a) A summary of previous evaluations of IIDA’s performance; 
(b) A summary of the in-depth analyses undertaken at NCAR.; 
(c) A summary of verification results from the RTVS, including comparisons to the 

performance of other algorithms and forecasts. 
 
As noted in the Quality Assessment Plan for IIDA prepared by the AWRP’s Quality 

Assessment Group (Brown and Mahoney 2000), the following items represent important aspects 
of the quality assessment of IIDA: 

 
(a) IIDA should be evaluated over at least one icing season.  
(b) The quality of IIDA should be compared to the quality of other relevant products [e.g., 

icing AIRMETs; earlier automated algorithms such as the RAP algorithm (Thompson et 
al. 1997)]. 

(c) A representative set of relevant issue times should be included in the evaluation. 
(d) Each IIDA forecast should be evaluated as a set of Yes/No forecasts, by applying a 

variety of thresholds to the IIDA values. 
(e) Pilot reports (PIREPs) of icing should be used as the verification data.  
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(f) Appropriate verification methods should be utilized, to take into account known 
characteristics of PIREPs. 

(g) Day-to-day variations in the verification statistics should be examined. 
 
These items were taken into account in the assessment presented here. For example, two seasons 
were used for the RTVS evaluation, and PIREPs were used as the verification data. The 
verification approach, described in Section 4, which is based on methods that have been 
developed over a number of years, is documented in several reports and papers. 
 

As noted in item (b) above, it is important to compare the quality of IIDA diagnoses to the 
quality of one or more standards of reference. Thus, the quality of the IIDA diagnoses is 
compared to the quality of several other automated forecasting algorithms (e.g., NNICE, VVICE; 
see Section 3), as well as to the quality of the operational forecasts (i.e., AIRMETs). However, it 
is important to emphasize that the algorithm forecasts (e.g. IIDA, NNICE, and VVICE) and the 
AIRMETs are very different types of forecasts, with different objectives.  The IIDA algorithm, 
for instance, is a diagnostic algorithm with hourly updates, which assimilates various datasets to 
obtain a snapshot of the potential for icing conditions.  The AIRMETs, on the other hand, are 
valid over a 6-h period and are designed to capture the icing conditions as they move through the 
AIRMET area over the 6-h forecast period.  Due to the differences between these forecasts, it is 
difficult to clearly compare the performance of forecasting algorithms and the AIRMETs, since 
the two approaches are focused on somewhat different attributes of the icing conditions.  
However, in order to understand the quality of the IIDA algorithm, it is necessary for 
comparisons between various forecasts to be made, and for IIDA diagnoses to be compared to 
the operational standard. These comparisons are made in such a way as to be as fair as possible 
to both the AIRMETs and IIDA, as described in Section 4, while still obtaining the information 
needed. Nevertheless, users of these statistics should keep these assumptions in mind when 
evaluating the strengths and weaknesses of each type of forecast.  

 

3. Data 

3.1. Algorithms and forecasts 
 

IIDA and some of the forecast products that are compared to IIDA are briefly described here. 
Some of these products have been included in previous evaluations of IIDA. Most (e.g., 
AIRMETs, VVICE) also are included in the ongoing RTVS evaluations. 
 

Integrated Icing Diagnostic Algorithm: IIDA was developed by the IFIPDT, with funding 
provided by the FAA's AWRP.  Every hour, IIDA generates diagnoses of icing conditions. These 
diagnoses are based on an intelligent combination of observations (satellite, surface, and radar) 
with 3-h temperature and humidity forecasts from the Rapid Update Cycle (RUC) numerical 
weather prediction system (Benjamin et al. 1999). The concepts underlying the development of 
IIDA are described in McDonough and Bernstein (1999).  
 

IIDA produces both a “General Icing” field and a “Supercooled Large Droplet” (SLD) icing 
field. Both of these components of IIDA are considered in this evaluation, although most 
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attention is focused on the General Icing field. The algorithm output for General Icing is a three-
dimensional icing “potential” field, with values ranging between 0 and 1 (sometimes re-scaled 
from 0 to 100) assigned to each RUC grid point. The likelihood of icing is expected to increase 
with increasing values of icing potential. However, the values are not calibrated to a probability 
scale. The SLD field also is a three-dimensional field of potential values, ranging between 0 and 
1. However, in some cases where the existence of SLD is difficult to ascertain, the algorithm 
assigns “unknown” to a grid point. Because IIDA produces values across a continuous range, 
users may select their own threshold for decision-making. 
 

AIRMETs: AIRMETs are the operational forecasts of in-flight icing conditions that are 
generated by AWC forecasters. The forecasts are produced every six hours and are valid for up 
to six hours (NWS 1991). AIRMETs may be amended as needed between the standard issue 
times. However, amended AIRMETs are not considered in this evaluation. The forecasts are in a 
textual form that can be decoded into latitude and longitude vertices, with tops and bottoms of 
the icing regions defined in terms of altitude. Unfortunately, some other more descriptive 
elements of the AIRMETs cannot be decoded and thus are not considered. For comparison with 
the IIDA diagnoses, and forecasts from other algorithms, the AIRMETs are evaluated over the 
same time window as the model-based algorithms. 
 

RAP algorithm: The RAP icing algorithm identifies conditions leading to several different 
icing environments, and it incorporates these structures into four icing forecast components: 
General, Unstable, Stratiform, and Freezing Rain (Thompson et al. 1997). These four 
components provide indications of where icing is likely to exist, and they identify the physical 
structure of the atmosphere (as depicted by the model) leading to the icing prediction. The RAP 
algorithm is only considered in the studies described in Section 6 (e.g., Brown et al. 1999). 
 

NNICE: The NNICE algorithm was developed by Don McCann at the AWC. The algorithm 
is based on recognition by a neural network of complex patterns of conditions required for 
significant icing (e.g., based on T, RH, and slight convective potential). In particular, NNICE 
uses T, RH, and computed convective potential from the RUC to make its predictions.  

 
VVICE: The Vertical Velocity Icing (VVICE) algorithm also was developed by Don McCann 

of the AWC. This tool bases aircraft icing forecasts on estimates of ice accumulation potential 
and the subsequent degradation of aircraft performance. VVICE estimates the Percent Power 
Increase (PPI) required to overcome the additional drag associated with an accumulation of ice 
so the aircraft can continue at a steady speed and altitude. More information about VVICE is 
available on the world-wide-web at http://www.awc-kc.noaa.gov/awc/help/vviceinfo.html. 

 
RUC Liquid Water Content (LWC) forecasts: In the current operational version of RUC, 

LWC predictions are based on the explicit microphysics scheme developed by Reisner et al. 
(1998). The LWC forecasts used in the comparisons presented here were based on the following 
criteria: (a) total LWC (cloud water plus rain water) greater than zero; (b) temperature less than 
0°C. 
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3.2. Observations 
 

PIREPs indicating the existence or lack of icing conditions are used as the verifying 
observations for the IIDA assessment. Both explicit Yes and No PIREPs are considered. In 
addition, PIREPs that indicate cloud-free skies overhead are used in some cases as an indicator 
of no-icing conditions, as in Brown et al. (1997); these reports are designated as “Clear-Above” 
(CA) reports.  

 
Yes PIREPs are grouped according to reported icing severity, including “All” (all severities); 

“MOG” (moderate or greater severity); and “Severe.” PIREPs included in the RTVS analyses 
were filtered using lightning observations to remove PIREPs that might be associated with 
convection. 
 

4. Mechanics 
 

Basic procedures used to evaluate the forecasts and diagnoses are briefly described in this 
section.  

4.1. Forecast/observation matching procedures 
 
Each PIREP is either matched or interpolated to the four closest grid points at a particular 

model level, for all model levels within the range of altitudes identified by the PIREP. The 
NCAR verification system uses a four-gridpoint matching procedure, in which the most extreme 
forecast value at the surrounding gridpoints is matched to a PIREP; RTVS uses an interpolation 
method to estimate the forecast value at the location of the PIREP, using forecasts at the four 
closest grid points. Previous comparisons of these approaches have indicated that the verification 
results are robust to this difference in matching approaches (Brown et al. 2000). The icing 
forecasts are evaluated over the entire continental U.S. domain considered by the AIRMETs, 
which includes some coastal waters. 

4.2. Time window 
 

The current version of IIDA incorporates information from PIREPs in the hour prior to the 
forecast valid time. Thus, starting in winter 2000, IIDA verification analyses only use PIREPs in 
a time window of one hour following the forecast valid time (previous evaluations used a time 
window including both one hour prior to and one hour after the valid time). The same one-hour 
period is used to evaluate the AIRMETs and other icing forecasts, so that the same PIREPs are 
used for all types of forecasts and the results are directly comparable. All of the NCAR evalu-
ations are limited to daylight hours (1200, 1500, 1800, 2100, 0000, and 0300 UTC), whereas the 
RTVS results include all IIDA issue times, including night-time hours. 
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5. Verification methods 
 
 The verification methods used for the IIDA evaluations are based on standard verification 
concepts that recognize the underlying framework for forecast verification and the associated 
high dimensionality of the verification problem (e.g., Murphy and Winkler 1987).  The methods 
described here were developed by the QAG and by members of the In-flight Icing PDT. They are 
described in greater detail in Brown (1996) and Brown et al. (1997). The methods are also 
outlined in the Quality Assessment Plan for IIDA (Brown and Mahoney 2000). 
 
 The icing forecast verification methodology outlined by Brown et al. (1997) treats the icing 
forecasts and observations as Yes/No values. This method can be extended to forecasts with 
values on a continuous scale using the approach outlined in Brown et al. (1999). In particular, the 
icing forecasts for IIDA and other algorithms with continuous output can be converted to a set of 
Yes/No forecasts by application of a variety of thresholds. For instance, application of a threshold 
of 0.50 to IIDA forecasts would lead to a Yes forecast for all grid points with an IIDA value 
greater than or equal to 0.50, and a No forecast for all grid points with an IIDA value less than 
0.50. The verification methods are based on the Yes/No two-by-two contingency table (Table 1), 
where the rows represent the forecasts, and the columns represent the observations. Each cell in 
this table contains a count of the number of times a particular forecast/PIREP pair was observed. 
Counts can represent an individual forecast field, or can be accumulated across days, weeks, 
months, and so on. Note that for icing forecasts, the counts in the verification table are PIREP-
based (i.e., the sum of the counts is the total number of Yes and No PIREPs that were included in 
the analysis), and not all forecast grid points are represented. 
 
Table 1.  Basic contingency table for evaluation of dichotomous (e.g., Yes/No) forecasts. Elements in 

the cells are the counts of forecast-observation pairs. 

Observation  
Forecast Yes No 

 
Total 

Yes YY YN YY+YN 
No NY NN NY+NN 

Total YY+NY YN+NN YY+YN+NY+NN 
 
  
 Table 2 lists the verification statistics that are included in the IIDA evaluations. Due to 
characteristics of the PIREPs, certain restrictions must be placed on the verification statistics that 
can be computed from Table 1 for evaluation of icing forecasts.  In particular, some measures 
and statistics cannot be appropriately estimated (Brown and Young 2000). Thus, Table 2 does 
not include measures such as the False Alarm Ratio, Critical Success Index, and Bias, which 
might be considered in the evaluation of other types of dichotomous forecasts; these measures 
cannot be computed for verification of icing forecasts. Hence, PODy and PODn are the primary 
verification statistics that are included in the evaluation.  
 
 PODy and PODn are estimates of the proportions of Yes and No observations that were 
correctly forecasted, respectively. Together, PODy and PODn measure the ability of the 
forecasts to discriminate between Yes and No icing observations. The True Skill Statistic (TSS) 
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(Doswell et al. 1990), also known as Hanssen-Kuipers discrimination statistic (Wilks 1995), 
summarizes this discrimination ability. Note, however, that it is possible to obtain the same value 
of TSS for a variety of combinations of PODy and PODn. Thus, it always is important to 
consider both PODy and PODn along with TSS.   
 
 The % Area is the percent of the total possible area (i.e., the continental U.S.) that has a Yes 
forecast at some model level above, and % Volume is the percentage of the total volume of air 
space that has a Yes forecast. These measures indicate the spatial extent of the forecasts. Volume 
Efficiency is the ratio of PODy to % Volume; this efficiency statistic represents the PODy per 
unit % Volume.  Although Volume Efficiency is a convenient way to summarize the 
combination of PODy and forecast extent, comparisons of this statistic for different forecasts can 
be misleading unless both PODy and % Volume are also considered. 
 

Table 2.  Verification statistics to be used in the evaluation of IIDA. 

Statistic Definition Description 

PODy YY/(YY+NY) Probability of Detection of “Yes” observations 

PODn NN/(YN+NN) Probability of Detection of “No” observations 

TSS PODy + PODn – 1 True Skill Statistic 

% Area (Forecast Area) / (Total Area) x 100 % of the area of the continental U.S. where icing is 
forecast to occur at some level 

% Volume (Forecast Volume) / (Total Volume) x 100 % of the three-dimensional airspace over the 
continental U.S. where icing is forecast to occur 

Volume 
Efficiency 

(PODy x 100) / % Volume PODy (x 100) per unit % Volume 

Curve Area Area under the curve relating PODy and 1-
PODn 

Overall skill, based on Signal Detection Theory 
(Relative Operating Characteristic curve) 

 
The relationship between PODy and 1-PODn for different algorithm thresholds is the basis 

for the verification approach known as “Signal Detection Theory” (SDT). This relationship can 
be represented for a given algorithm by the curve joining the (1-PODn, PODy) points for 
different algorithm thresholds. The resulting curve is known as the “Relative Operating 
Characteristic” (ROC) curve in SDT. The goal is for the ROC curve to lie close to the upper left 
corner of the diagram. The area under this curve is a measure of overall forecast skill (e.g., 
Mason 1982), and provides another measure that can be compared among the algorithms, which 
is not dependent on the threshold used. A forecast with no skill would have an ROC area of 0.5 
or less. 
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The curves relating PODy to % Volume and % Area, with points representing each algorithm 
threshold, also are of interest. These curves represent the trade-off between large PODy values 
and the spatial extent of the forecast. As with the ROC, curves for better forecasting systems lie 
toward the upper left corner of the diagram. 

 

6. Results of previous studies 

6.1. Brown et al. 1997 
 

This paper, which is attached as Appendix 1, provides an earlier comparison of a number of 
icing forecasting techniques, including the RAP algorithm and the AIRMETs, based on forecasts 
and observations collected in winter 1994. Most importantly, the paper defined the underlying 
methodology for verification of icing forecasts and diagnoses that is utilized for the IIDA 
verification studies presented in this report. Overall results for the RAP algorithm, 0-h forecasts, 
were PODy(MOG) = 0.74, PODn = 0.52, % Area = 43%, and % Volume = 6.5%.  

6.2. Brown et al. 1999 
 
This paper provided the first published evaluation of IIDA, and included comparisons of 

IIDA to a number of other algorithms and forecasts, including NNICE and the AIRMETs, using 
data collected from December 1997 through March 1998. Results of this study indicated that 
IIDA performed better than algorithms that had been developed previously (e.g., the RAP 
algorithm). In particular, IIDA forecasts were able to capture the same proportion of Yes PIREPs 
while covering a smaller volume. IIDA also performed better than NNICE in this respect. These 
results also suggested that IIDA was somewhat more efficient than the AIRMETs in terms of 
volume coverage, but that the AIRMETs were more efficient in terms of areal coverage. 
Verification statistics for IIDA with a threshold of 0.20 were the following: PODy(MOG) = 
0.74; PODn = 0.56; % Area = 42%; % Volume = 8%. In comparison, the statistics for AIRMETs 
were: PODy(MOG) = 0.73; PODn = 0.60; % Area = 35%; and % Volume = 10%. This paper is 
included as Appendix 2. 
 

6.3. Kane et al. 2000 
 

Kane et al. (2000) considered regional variations in the performance of IIDA and the 
AIRMETs, using data collected during winter 2000. The results indicate that IIDA performance 
does vary somewhat from region to region. In particular, for a given IIDA threshold (e.g., 0.25), 
the PODy value is largest in the Great Lakes region and the Northeast, and smallest in the South. 
This paper is included as Appendix 3. 
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7. Results for winter 2000 
 

A special verification effort was undertaken using the RAP verification system, to provide an 
in-depth evaluation of IIDA diagnoses for winter 2000. Specifically, IIDA output and PIREPs 
were archived and analyzed for the period 20 January through 21 March 2000. Because the data 
were archived in real time, the verification results represent the performance of IIDA in an 
operational setting. The IIDA verification statistics are compared to verification statistics for the 
AIRMETs and LWC forecasts from the RUC, and are limited to valid times of 1200, 1500, 1800, 
2100, 0000, and 0300 UTC. Overall statistics are presented, as well as variations in the statistics 
from day-to-day and by valid time. In addition, the use of IIDA as a persistence forecast is 
considered, to provide a more meaningful comparison to the AIRMETs. All of the analyses 
concern the General Icing component of IIDA, except for the set of results for the SLD 
component that are presented in Section 7.7. 

7.1. Overall results 
 

Overall verification results for IIDA for all valid times combined are shown in Fig. 1, with 
the results for AIRMETs included for comparison. This figure shows the relationships between 
PODy and % Area, % Volume, and 1-PODn, for MOG PIREPs. As shown by the plots in this 
figure, the curve for the IIDA diagnoses is lower than the AIRMET point for PODy(MOG) vs. % 
Area (Fig. 1a). This result suggests that the AIRMETs cover a smaller areal extent, in general, 
for a given PODy(MOG) value. Most likely, this result is due to the fact that IIDA values may 
exceed a threshold in relatively narrow layers, which will contribute significantly to the areal 
coverage, but only a little to the volume coverage. In contrast, the AIRMETs have a coherent 
vertical structure. 

 
The curve for PODy(MOG) vs. % Volume (Fig. 1b) indicates that IIDA is able to attain a 

relatively large PODy(MOG) value with a relatively small volumetric coverage, relative to the 
AIRMETs. At least in part, this result is also due to the fact that the AIRMETs are restricted to a 
cylindrical structure, whereas the three-dimensional icing field defined by IIDA may have an 
uneven top and/or bottom, and it may even have holes in the middle. 

 
The curve relating PODy to 1-PODn (Fig. 1c) shows that IIDA diagnoses have positive skill, 

and they are able to successfully discriminate between Yes and No observations of icing. In 
particular, the IIDA curve lies above the 45° line, which is the “no-skill” line in a ROC diagram. 
The area under the curve is 0.76. For comparison, as noted in Section 5, the curve area for no-
skill forecasts is 0.5. The diagram also indicates that the AIRMETs have positive skill; however, 
because the AIRMET skill is represented by a single point, it is not meaningful to compute the 
ROC area for these forecasts.  
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(c) 

verall verification statistics for IIDA and AIRMETs for winter 2000, for all valid times 
, based on MOG PIREPs: (a) PODy vs. % Area; (b) PODy vs. % Volume; and (c) PODy 
n. Each point on the IIDA curves represents a different threshold used to define Yes/No 

ecasts. The thresholds (starting in the upper right corner) are 0.0, 0.05, 0.15, 0.25, 0.35, 
0.65, 0.75, 0.85, and 0.95. The (1,1) point is also included in Fig. 1c to complete the curve. 

 presents a summary of some of the overall verification statistics for IIDA and the 
, for two IIDA thresholds. The results in this table suggest that IIDA – for these 
thresholds – is able to capture a relatively large number of PIREPs while covering a 
mall volume of airspace. In addition, for a comparable value of PODy, IIDA was able 
 classify a large percentage of the negative icing reports. For these thresholds, IIDA 

lassified about 65% of the No PIREPs, 70-80% of the Yes PIREPs, and about 90% of 
bove (CA) PIREPs, while forecasting icing over 5-8% of the airspace volume. 

sults in Table 3 also indicate that the POD values depend somewhat on the type of 
t is considered, and these variations are consistent for both IIDA and the AIRMETs. In 
PODy values increase somewhat as the reported severity increases. Moreover, PODn 
much larger for the inferred no-icing conditions (i.e., CA reports) than for the explicit 
. These results are consistent with those reported by Brown et al. (1997). 
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Table 3. Overall verification statistics for IIDA and the AIRMETs, for the period 20 January 
through 21 March 2000, for all valid times combined. 

PODy PODn  

Forecast 
 

All 
 

MOG 
 

SVR 
 

No 
 

CA 

 
 

TSS 

 
% 

Area 

 
% 

Vol 

 
Vol 
Eff. 

IIDA-0.15 0.80 0.83 0.87 0.62 0.90 0.45 45.0 7.6 10.9 
IIDA-0.25 0.70 0.75 0.76 0.67 0.93 0.42 38.1 5.6 13.4 
AIRMETs 0.76 0.79 0.90 0.56 0.91 0.35 28.0 10.3 7.7 
 
In considering the statistics in Table 3, it is important to recognize that the measures 

presented have uncertainty associated with them, due to sampling and other errors. Table 4 
provides 95% confidence intervals for PODy(MOG) and PODn(No), computed using methods 
appropriate for application to PIREP-based statistics, which are described in Kane and Brown 
(2000). These intervals have a range of about 0.05 for IIDA and 0.06-0.08 for the AIRMETs. 
The intervals for IIDA-0.25 and the AIRMETs overlap somewhat. However, the intervals for 
IIDA-0.15 are distinct from the intervals for both IIDA-0.25 and the AIRMETs, indicating that 
the IIDA-0.15 measures are significantly different from the IIDA-0.25 and AIRMET measures. 

 
Table 4. 95% confidence intervals for PODy(MOG) and PODn(No) values shown in Table 3. 

Statistic  
Forecast PODy(MOG) PODn(No) 

IIDA-0.15 0.81, 0.85 0.60, 0.64 
 IIDA-0.25 0.72, 0.77 0.65, 0.69 
AIRMETs 0.75, 0.83 0.53, 0.59 

 

7.2. Variations with valid time 
 

Figure 2 shows the same plots as in Fig. 1, with a separate line for each valid time. In 
general, the lines for the various valid times are quite consistent with each other, and it is 
difficult to identify a specific pattern of variation among valid times. The results in Table 5 make 
this comparison a bit more specific, for the same IIDA thresholds considered in Table 3. The 
results in Table 5 suggest that there is a slight tendency for PODy values to be a bit larger for 
early-day periods (1200 – 2100 UTC), but this tendency is quite small. Overall statistics, such as 
TSS and Volume Efficiency, indicate that there is no particular trend with valid time. The most 
notable variation in Table 5 is associated with the PODy values for severe PIREPs. However, the 
large variation in these statistics is most likely related to the very limited number of severe 
reports in the dataset, as shown in Table 6, which lists the numbers of each type of PIREP that 
were included in the analysis, by valid time. For individual valid times, the number of severe 
reports ranges from 21 to 44. 

 
Characteristics of the variations of the statistics with valid time can be summarized using the 

ROC area statistics presented in Table 7. As shown in this table, the ROC Curve Area values 
vary only a small amount among the valid times. The largest value (0.80) is associated with the 
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1800 UTC valid time, while the smallest value (0.74) is associated with the 1200 UTC valid 
time.  
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 Figure 1, showing overall verification results for IIDA by valid time. 

ication statistics seem to be quite stable among the valid times, the 
ts focuses on statistics for all valid times combined. This approach has the 
g a larger sample of PIREPs to use in estimating the verification statistics, 
 more stable results (e.g., especially for statistics where the number of 
imited, such as for severe conditions). 

 variations 

lso consider the variations in the verification statistics from day-to-day, to 
ariability can be expected for different forecasts, and what the expected 
various statistics. This variability is most conveniently displayed using box 
an easy way to compare the distributions of values. Figure 3 shows box 
ation statistics, organized according to the value of the IIDA threshold that 
 Yes/No forecasts, for all valid times combined.  
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Table 5. Verification statistics for IIDA by valid time, for two IIDA thresholds, for the period 20 

January through 21 March 2000.  

PODy PODn Valid 
time 

(UTC) 
 

All 
 

MOG 
 

SVR 
 

No 
 

CA 

 
 

TSS 

 
% 

Area 

 
% 

Vol 

 
Vol 
Eff. 

Threshold = 0.15 
1200 0.81 0.85 0.90 0.53 0.89  0.38 46.3 7.8  10.9 
1500 0.80 0.84 0.79 0.62 0.91  0.46 45.2 7.5  11.2 
1800 0.81 0.84 0.81 0.68 0.92  0.52 45.8 7.8  10.8 
2100 0.79 0.83 1.00 0.63 0.91 0.46 43.8 7.7 10.8 
0000 0.78 0.79 0.91 0.63 0.87 0.42 45.1 7.9 10.0 
0300 0.77 0.79 0.78 0.59 0.91 0.38 44.2 7.3 10.8 
All 0.80 0.83 0.87 0.62 0.90 0.45 45.0 7.6 10.9 

Threshold = 0.25 
1200 0.72 0.77 0.87 0.60 0.91 0.37 38.6 5.6 13.8 
1500 0.70 0.76 0.53 0.67 0.93 0.43 38.7 5.5 13.8 
1800 0.72 0.76 0.81 0.71 0.94 0.47 39.4 5.9 12.9 
2100 0.72 0.76 0.89 0.68 0.93 0.44 37.4 5.7 13.3 
0000 0.68 0.70 0.86 0.67 0.90 0.37 37.0 5.7 12.3 
0300 0.66 0.71 0.62 0.68 0.93 0.39 36.8 5.3 13.4 
All 0.70 0.75 0.76 0.67 0.93 0.42 38.1 5.6 13.4 

 
 
 

Table 6. Counts of PIREP observations included in the analyses, by PIREP type and valid time. 
Note that a single PIREP may be assigned to multiple levels; each level is counted. 

Valid time (UTC)  
PIREP type 1200 1500 1800 2100 0000 0300 All 

Yes – All 1,987 3,254 2,650 3,008 1,299 1,289 13,487 
Yes – MOG  779 1,114 1,076 1,254 598 619 5,440 
Yes – SVR 38 34 21 44 22 32 191 

No 1,238 2,117 1,796 1,479 494 467 7,591 
CA 10,965 16,041 13,096 9,855 3,541 3,099 56,597 

 
 
 

Table 7. ROC Curve Areas by valid time. 

Valid Time 
(UTC): 

 
1200 

 
1500 

 
1800 

 
2100 

 
0000 

 
0300 

 
All 

Curve area: 0.74 0.76 0.80 0.77 0.75 0.77 0.76 
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Figures 3a-c show the distributions of PODy and PODn values. One interesting aspect of 
these figures is the larger variability associated with the PODy(MOG) values, in comparison to 
the PODy(All) distributions. In particular, the boxes – which contain the middle 50% of the 
distribution – are quite a bit larger for PODy(MOG) than for PODy(All). This result may be at 
least partially related to the smaller numbers of MOG PIREPs available to compute 
PODy(MOG), relative to the number of All PIREPs. For most IIDA thresholds, PODy values as 
large as 1 and as small as 0 were observed. However, in general, the central part of the 
distributions of PODy values are a decreasing function of threshold, while the central part of the 
PODn distributions is an increasing function of threshold. For an IIDA threshold of 0.25, the 
middle half of the observations have (a) a PODy(All) value between about 0.55 and 0.85; (b) a 
PODy(MOG) value between about 0.6 and 0.9; and (c) a PODn value between about 0.6 and 
0.85. 

 
Distributions of % Area and % Volume also exhibit a fair amount of variability from day-to-

day, and with threshold. In particular, Figs. 3d-e show that the distributions of both % Area and 
% Volume are decreasing functions of threshold. However, these distributions exhibit less day-
to-day variability than the PODy distributions. That is, they appear to be “tighter,” perhaps due 
to the fact that they are not impacted by the availability and distribution of pilot reports. For an 
IIDA threshold of 0.25, the middle half of IIDA forecasts have a % Area value between about 30 
and 45%, and a % Volume value between 4 and 7%. 

 
Day-to-day variability in verification statistics is common to all types of forecasts, not just 

IIDA. In particular, the AIRMET verification statistics exhibit similar variability, as shown in 
Fig. 4. These box plots show the distributions of verification statistics for all valid times 
combined, for the AIRMETs and for IIDA with thresholds of 0.15 and 0.25. For PODy(MOG), 
the AIRMET and IIDA-0.15 statistics have similar distributions, whereas the distribution for 
IIDA-0.25 values is located somewhat below the other two distributions. The PODy(MOG) 
values for IIDA-0.25 also appear to be somewhat more variable, but this result may be related to 
the fact that PODy is bounded at 1.0 and the AIRMET and IIDA-0.15 PODy values are more 
frequently close to that upper bound (which they cannot exceed). Distributions of PODn for 
IIDA (Fig. 4b) are located somewhat higher than the distribution for the AIRMETs; all three 
distributions exhibit similar variability. 

 
As expected, the % Area distributions are higher for IIDA than for the AIRMETs (Fig. 4c), 

and the % Volume distribution for the AIRMETs is higher than the corresponding distributions 
for IIDA (Fig. 4d). One notable feature of Fig. 4d is the narrow range of % Volume values 
associated with IIDA – the distributions of % Volume are very tight, as noted earlier with respect 
to Fig. 3e. Thus, although the detection rates associated with IIDA diagnoses are fairly variable 
from time to time, the extent of the regions covered is quite consistent from time to time. It also 
is possible that the AIRMET volumes are constrained to be influenced to some extent by non-
meteorological factors, which impact the volume warned. 
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(a) 

 

 

(b) 

 

(c) 

Figure 3. Box plots showing distributions of daily values of verification statistics for IIDA, by 
threshold: (a) PODy(All) (b) PODy(MOG); (c)  PODn; (d) % Area; and (e) % Volume. Line inside 

each box represents median value; bottom and top of boxes are 0.25th and 0.75th quantile values, 
respectively; ends of bottom and top whiskers are 0.05th and 0.95th quantile values; and points 
extending below and above whiskers are in lower and upper 5% of distribution, respectively. 
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(d) 

 

(e) 

Figure 3, cont. 
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(a) 

 

 

(b) 

(c) 

 
(d) 

 
Figure 4. Distributions of verification statistics for IIDA and AIRMETs, as in Fig. 3, for all valid 

times combined: (a) PODy(MOG); (b) PODn; (c) % Area; and (d) % Volume. 
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7.4. IIDA persistence 
 

As discussed in Section 2, the AIRMETs represent a very different kind of forecast from the 
IIDA diagnoses. One of the most important differences between the two systems is that the 
AIRMETs attempt to identify regions that will experience icing conditions over the subsequent 
six hours, whereas the IIDA diagnosis essentially is a nowcast, representing conditions at the 
time the diagnosis is updated. This distinction has not been directly taken into account in the 
preceding analyses. 

 
Although IIDA is not intended to be a forecast, it is of interest to examine its capabilities as a 

forecast, by essentially treating the IIDA diagnostic as a persistence forecast. This treatment 
allows a more appropriate comparison to the AIRMETs, and provides information to users 
regarding the length of time IIDA diagnoses might be assumed to be meaningful. 

 
Fig. 5 shows verification results for IIDA diagnoses, as well as IIDA treated as a 3-h and a 6-

h forecast, and the AIRMETs. Results in this figure suggest that the IIDA persistence forecasts 
perform fairly well for the first three hours. However, the performance deteriorates quite a bit by 
the end of the 6-h period. In particular, if the AIRMET point is used as a point of reference, the 
3-h forecast curve lies just above the point of reference, while the 6-h forecast curve lies below 
the point. These results are consistent across valid times. They suggest that the AIRMETs 
generally provide a better forecast of icing conditions in the latter part of the 6-h period than is 
provided by a persisted IIDA diagnosis. 
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7.5. Comparisons to RUC liquid water forecasts 
 
The explicit liquid water content (LWC) forecasts

possible approach to identifying locations of icing cond
sample of verification results for the RUC LWC forec
shown in Fig. 6, along with comparable results for IID
3, the LWC forecasts used for this comparison were ba
0; and (b) temperature less than 0°C. The results in Fig
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have some skill; in fact the points for the RUC LWC statistics lie along the curves for IIDA. 
Although the LWC forecasts only covered a very small volume, they also only correctly 
classified about 20% of the MOG PIREPs. 
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(a) (b)

Figure 6. Verification curves for IIDA, with points representing statistics for 3-h RUC LWC 
forecasts and AIRMETs, all valid at 1800 UTC: (a) PODy(MOG) vs. % Volume; and (b) 

PODy(MOG) vs. 1-PODn. 

 

7.6. Sensitivity to missing data 
 

Computation of the IIDA diagnoses requires a variety of different types of data, including 
satellite, surface observations, and radar (McDonough and Bernstein 1999). The evaluation 
described so far has been based on an “operational” version of IIDA, which was run in real time 
during the operational period. In some cases, not all of the required datasets were available. 
Thus, the reported performance represents the level of quality that can be expected when IIDA is 
run operationally, and is occasionally subjected to missing data. 
 

It was of interest to determine if the reported performance was adversely affected by 
occasional missing datasets. Thus, IIDA was run in a post-processing mode, with complete 
datasets for all cases, and the resulting verification statistics were compared to the statistics that 
have been presented here. The results (not shown) indicate very little change in overall 
performance associated with use of the complete datasets. 
 

7.7. Verification of SLD field 
 
As mentioned in Section 3, IIDA provides an indication of the potential for SLD icing, as 

well as the potential for General Icing conditions. Unfortunately, verification data are quite 
limited for SLD conditions. Brown et al. (1999) used the combination of MOG conditions and 
clear or mixed icing type reported by PIREPs as an indicator of SLD conditions. Here, severe 
PIREPs are used for most of the comparisons. 
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Table 8 shows comparisons of verification statistics for the IIDA SLD field, 3-h RUC LWC 
forecasts, and the IIDA General Icing field. The choice of threshold for the IIDA General Icing 
algorithm in Table 8 was based on the PODy for severe (SVR) PIREPs. In particular, the 
threshold was selected so that the PODy values for severe PIREPs are quite similar for the four 
categories of forecasts. In particular, the PODy for severe PIREPs is approximately 0.3 in all 
cases, with a threshold of 0.85 used for the IIDA General Icing case.  

 
The results in Table 8 indicate that while the PODy values for severe PIREPs are similar 

among the different algorithms, the values of PODn, % Area, and % Volume are quite different. 
In particular, the SLD algorithm covers a much smaller area and volume of air-space than the 
other algorithms. This result is reflected in the Volume Efficiency statistics, which are much 
larger for the SLD algorithm than for the other algorithms. The SLD thresholds used in this 
analysis are quite small, with associated small PODy values for All and MOG PIREPs. Thus, the 
SLD field is not a good indicator of less severe icing, even though it is quite efficient at 
identifying severe conditions. 

 
For comparison, consider the results presented in Table 3. While the AIRMETs and the IIDA 

General Icing algorithm capture a larger proportion of the severe icing reports, they do so at the 
expense of covering a much larger proportion of the area and volume. The SLD algorithm 
captures about 30% of the severe reports, but it does so very efficiently. 

 
Table 8. Verification statistics for IIDA SLD field (with thresholds of 0.05 and 0.15), IIDA General 

Icing field (with a threshold of 0.85) and 3-h RUC LWC forecasts, for the period 20 January 
through 21 March 2000, for all valid times combined. TSS and Volume Efficiency are based on 

PODy(SVR). 

PODy PODn  

Algorithm 
 

All 
 

MOG 
 

SVR 
 

No 
 

CA 

 
 

TSS 

 
% 

Area 

 
% 

Vol 

 
Vol 
Eff. 

SLD-0.05 0.12 0.14 0.32 0.96 0.99  0.28 2.6 0.3 106.7 
SLD-0.15 0.08 0.10 0.27 0.98 1.00  0.25 1.8 0.2  135.0

 
IIDA-0.85 0.19 0.22 0.33 0.94 0.99 0.27 9.7 0.6 55.0 

 
RUC-LW 0.22 0.26 0.30 0.94 1.00 0.24 13.0 1.1 27.3 
 

8. RTVS comparisons 
 
The IIDA diagnostic algorithm, NNICE, VVICE, and the AIRMETs, were evaluated from 1 

January – 31 March 2000 and 2001 by the RTVS, with statistical output provided through the 
web-based interface (http://www-ad.fsl.noaa.gov/afra/rtvs; link to icing).  Only a selection of the 
available results is presented here. The PIREPs used to evaluate the forecasts were located 
outside of convective regions. Only Yes PIREPs reporting MOG severity were included, and 
Clear Above PIREPs were not considered in the analyses. As in the results presented in Section 
7, a verification window of 1 h after the issue time was applied for verification purposes. For 
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VVICE and NNICE, results for the 0-h lead-time are shown. All valid times, including both day-
time and night-time hours, were combined to compute the statistics. 

8.1. Overall results 
 

Algorithm performance for IIDA, NNICE, VVICE, and the AIRMETs for the period from 1 
January – 30 March 2000 and 2001 (hereafter denoted as Eval2000 and Eval2001) is 
summarized in Figs. 7-10. In these figures, each line on the plots represents one of the three 
algorithms, and the AIRMETs are represented by a single point. Each symbol on a line indicates 
a unique threshold used to define the icing potential. The values of PODy vs. 1-PODn are shown 
in Fig. 7 for Eval2000 and Fig. 8 for Eval2001. The plots of PODy vs. % Volume are shown in 
Fig. 9 for Eval2000 and Fig. 10 for Eval2001.  In all cases, the best statistical scores should 
approach the values in the upper left hand corner of the plot, where PODy approaches 1.0, 1-
PODn approaches 0, and % Volume is minimized. 

 
Statistically, the overall differences between the forecasts are small.  However, the IIDA 

algorithm does indicate an improvement over the other forecasts, which is particularly evident in 
Eval2001, as indicated by higher PODy(MOG) values at all thresholds for a given 1-PODn value 
(Fig. 8).  When the % Volume is considered (Figs. 9 and 10), IIDA and NNICE remain the top 
performers.  For instance, for all values of % Volume, the PODy(MOG) values are larger for 
IIDA than for the other forecasts, particularly between volumes of 5 - 15%.  It should be noted 
that the AIRMET volumes are designed to contain moving areas of icing over a 6-h period.  
Therefore, the actual volume intended to be valid for the AIRMETs at any particular time may 
be smaller than the value indicated in this evaluation.  However, that information is difficult to 
precisely obtain from the text-based AIRMET message. 

8.2. Weekly results 
 

Time series plots of PODy(MOG), PODn, and % Volume for Eval2000 and Eval2001 are 
shown in Figs. 11-16.  Each line on the plots represents a statistic for one of the forecasts at a 
specific threshold.  With the exception of VVICE, the thresholds chosen for display were 
selected so that the PODy(MOG) values for all the forecasts were similar.  Further testing is 
needed to determine a more representative threshold for VVICE.  Each point on the lines 
represents a statistic computed over a 7-day period during Eval2000 and Eval2001.  
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Figure 7. Algorithm summary plots of PODy(MOG) vs. 1-PODn for IIDA (triangle), NNICE (‘*’), 
VVICE (diamond), Icing AIRMETs (square), from 1 January – 31 March 2000 (Eval2000).  Each 
dot on a line represents a unique threshold. Thresholds are 0.02, 0.15, 0.25, 0.45, 0.65, and 0.85 for 

IIDA; 0.5, 0.9, 2.5, 3.5, 4.0, and 5.0 for NNICE; and 0.01, 0.05, 0.08, 0.12, 0.16, and 0.20 for VVICE.  

 
Figure 8. As in Fig. 7, for the period 1 January – 31 March 2001 (Eval2001). 
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Figure 9. As in Fig. 7, for PODy(MOG) vs. % Volume, for Eval2000. 

 

 
Figure 10. As in Fig. 7, for PODy(MOG) vs. % Volume, for Eval2001. 
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Figure 11.  Time series plots of weekly PODy(MOG) for IIDA (triangle), NNICE (‘*’), VVICE 
(diamond), Icing AIRMETs (square), from 1 January – 31 March 2000 (Eval2000).  Each line 
represents a unique threshold for IIDA (0.15), NNICE (2.5), VVICE (0.01), and AIRMETs (no 

threshold) and each dot is a PODy(MOG) value computed over a 7-day period. 

 

Figure 12. As in Fig. 11, for the period 1 January – 31 March 2001 (Eval2001). 
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Figure 13. As in Fig. 11, for weekly time series of PODn, for Eval2000. 

 

 
Figure 14. As in Fig. 11, for weekly time series of PODn, for Eval2001. 
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Figure 15. As in Fig. 11, for weekly time series of % Volume during Eval2000. 

 

 
Figure 16. As in Fig. 11, for weekly time series of % Volume during Eval2001. 
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Examination of the time series of weekly PODy(MOG) values for IIDA, NNICE, VVICE, 
and the AIRMETs for Eval2000 (Fig. 11) and Eval2001 (Fig. 12) indicates that the best statistics 
are produced by IIDA, NNICE, and the AIRMETs. The PODy(MOG) values for VVICE are 
well below the lines for the other forecasts, even though the VVICE threshold is quite small. 
Comparisons among the forecasts for Eval2001 (Fig. 12) indicate that the PODy(MOG) values 
for the AIRMETs and VVICE decrease somewhat as March approaches, while the PODy(MOG) 
values for IIDA and NNICE remain high.  When PODn is considered (Fig. 13 for Eval2000; Fig. 
14 for Eval2001), the IIDA and AIRMET time series are nearly identical throughout the period, 
while the line for NNICE is below the others.  The % Volume curve (Fig. 15 for Eval2000; Fig. 
16 for Eval2001) is lowest for VVICE and IIDA, with larger values of % Volume recorded for 
NNICE and the AIRMETs in most weeks.  In general, the quality of the IIDA diagnoses, as 
measured by PODy(MOG), PODn, and % Volume, appears to be relatively consistent 
throughout January and March, while somewhat larger variations in the verification statistics for 
NNICE, VVICE, and the AIRMETs are noted.   

8.3. Results by height 
 

Height series plots of PODy(MOG) and PODn for Eval2000 and Eval2001 are shown in 
Figs. 17-20.  Heights above 30,000 ft. were excluded from this evaluation.  Each line on the plots 
represents the statistic for one of the forecasts at a specific threshold.  These thresholds 
correspond to those presented on the time series plots. Each symbol on a line represents a 
statistical value computed over the entire period from 1 January – 31 March at a specific height.   
 

As shown in Figs. 17 (Eval2000) and 18 (Eval2001), overall, the largest PODy(MOG) values 
for the forecasts are associated with altitudes below 15,000 ft, with a steady decrease in 
PODy(MOG) as the height increases to 30,000 ft.  With the exception of the lowest two height 
levels, IIDA generally performs better than the other forecasts at altitudes below 15,000 ft.  
However, above 15,000 ft, the PODy(MOG) values for IIDA drop off somewhat more quickly 
than the values for the other forecasts.  The AIRMETs and NNICE perform somewhat better 
than the other algorithms at heights above 15,000 ft. When PODn is considered, IIDA 
performance is somewhat better than the performance of the AIRMETs and NNICE at almost all 
altitudes, as shown by the curves in Figs. 19 and 20 (Eval2000 and Eval2001, respectively).  In 
particular, the PODn line for IIDA is consistently located further to the right of the other lines at 
most heights.  The large PODn values for VVICE are a response to the low PODy(MOG) values 
shown in the previous diagrams. 
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Figure 17.  Height series plots of PODy(MOG) for IIDA (triangle), NNICE (‘*’), VVICE (diamond),  
and Icing AIRMETs (square), from 1 January – 31 March 2000 (Eval2000).  Each line represents a 
unique threshold for IIDA (0.15), NNICE (2.5), VVICE (0.01), and AIRMETs (no threshold).  The 

statistical values were computed over the entire 3-month period. 

 
Figure 18. As in Fig. 17, for the period 1 January – 31 March 2001 (Eval2001). 
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Figure 19. As in Fig. 17, for PODn height series during Eval2000. 

 
Figure 20. As in Fig. 17, for PODn height series during Eval2001. 
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9. Summary and conclusions 
 

The analyses presented in this report provide a comprehensive evaluation of IIDA over two 
seasons. The results thus are representative of IIDA’s performance in a variety of conditions. The 
IIDA diagnoses were compared to operational icing forecasts (AIRMETs) and to forecasts based 
on the output of two algorithms – NNICE and VVICE – which were developed at the Aviation 
Weather Center. In addition, some comparisons considered RUC LWC forecasts. Although the 
AIRMETs are quite different from IIDA in many ways (e.g., they are limited to a volume that 
can be defined in a textual message, and they are intended to depict icing conditions over a 6-h 
period), they were included in this evaluation because they represent the operational standard 
that is currently available to users. Nevertheless, as noted earlier, it is important to use care in 
evaluating performance differences between the AIRMETs and the automated, gridded 
algorithms, and in comparing their strengths and weaknesses. 
 

Comparison of previous evaluations of IIDA to more recent evaluations suggests that the 
quality of the IIDA diagnoses has improved somewhat; in particular, differences between the 
verification statistics for IIDA and the other forecasts are somewhat greater in recent years than 
was the case for earlier versions of the algorithm. A regional evaluation of IIDA suggests that 
IIDA is best at detecting icing conditions in the Great Lakes region and the Northeast, and 
somewhat less capable in the South; similar characteristics were noted for the AIRMETs (Kane 
et al. 2000). 

 
Results of the in-depth evaluation of IIDA for winter 2000 and the RTVS evaluations for 

winters 2000 and 2001 indicate that IIDA is relatively efficient at detecting icing conditions, 
with a PODy(MOG) of 0.75-0.85, and a corresponding PODn value between 0.6 and 0.7, 
depending on the IIDA threshold used to define the forecasts. Moreover, a relatively small 
percentage (5-8%) of the total airspace is impacted by the IIDA diagnoses. AIRMETs captured 
similar proportions of Yes reports, while capturing a somewhat smaller proportion of No reports. 
AIRMETs were somewhat more efficient in terms of the area covered by the forecasts and 
somewhat less efficient in terms of the volume of airspace covered; however, this result is at 
least partially related to constraints on the form of the AIRMETs. Overall, RTVS verification 
analyses – which considered both night-time and day-time icing diagnoses – indicate that IIDA 
performance is somewhat better than the performance of NNICE and VVICE, and the 
AIRMETs, in comparisons of PODy, % Volume, and PODn. The results of the ROC analyses 
indicate that the IIDA diagnoses are skillful, as measured by their ability to discriminate between 
Yes and No icing situations.  

 
The results also indicate that PODy and PODn values for all of the forecasts and algorithms 

are somewhat variable from time to time. For example, for IIDA with a threshold of 0.25, 
PODy(MOG) for individual diagnoses ranges from about 0.2 to 1.0, with the middle 50% of 
values between 0.6 and 0.9. However, the volume covered by the IIDA diagnoses is quite 
consistent from time-to-time. RTVS evaluations of variations in the statistics from week-to-week 
suggest that verification statistics for the three algorithms and the AIRMETs exhibit similar 
variations. PODy values for the AIRMETs and VVICE decreased somewhat toward the end of 
the winter 2001 season, while the PODy values for IIDA and NNICE remained somewhat more 
consistent throughout the season. 
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Other results of the study include the following items: 
• IIDA performs fairly well as a persistence forecast out to about three hours. After that 

period, they are generally out-performed by the AIRMETs. 
• IIDA performance is best at lower altitudes (15,000 ft and below) and IIDA is better than 

the other algorithms and AIRMETs at capturing No-icing conditions at all altitudes, 
while still maintaining a good PODy value.  

• The IIDA SLD field is very efficient at capturing PIREPs reporting severe icing 
conditions. Although the PODy for severe reports is about 0.3, the diagnoses cover a very 
small volume, in comparison to the IIDA General Icing field, the AIRMETs, and the 
LWC forecasts. 

 
In summary, IIDA is quite skillful at diagnosing General Icing conditions, and the SLD 

algorithm is very efficient at detecting severe icing situations. IIDA performs well in 
discriminating between Yes and No icing conditions, and is efficient in limiting the airspace 
warned.   
 
 

Acknowledgments 
 

This research is in response to requirements and funding by the Federal Aviation 
Administration.  The views expressed are those of the authors and do not necessarily represent 
the official policy and position of the U.S. Government. 
 

References 
 
Benjamin, S.J., J.M. Brown, K.J. Brundage, D. Kim, B. Schwartz, T. Smirnova, and T.L. Smith, 
1999: Aviation forecasts from the RUC-2. Preprints, 8th Conference on Aviation, Range, and 
Aerospace Meteorology, Dallas, TX, 10-15 January, American Meteorological Society (Boston), 
486-490. 
 
Brown, B.G., 1996: Verification of in-flight icing forecasts: Methods and issues. Proceedings, 
FAA International Conference on Aircraft In-flight Icing, Report No. DOT/FAA/AR-96/81, II, 
319-330. 
 
Brown, B.G., and J.L. Mahoney, 2000: Quality Assessment Plan for the Integrated Icing 
Diagnostic Algorithm. Prepared by the Quality Assessment Group, Aviation Gridded Forecast 
System Product Development Team, available from B.G. Brown (bgb@ucar.edu), 7 pp. 
 
Brown, B.G., and G.S. Young, 2000: Verification of icing and turbulence forecasts: Why some 
verification statistics can’t be computed using PIREPs. Preprints, 9th Conference on Aviation, 
Range, and Aerospace Meteorology, Orlando, FL, 11-15 September, American Meteorological 
Society (Boston), 393-398. 
 

 33

mailto:bgb@ucar.edu


Brown, B.G., G. Thompson, R.T. Bruintjes, R. Bullock, and T. Kane, 1997:  Intercomparison of 
in-flight icing algorithms.  Part II: Statistical verification results.  Wea.  Forecasting, 12, 890-
914. 
 
Brown, B.G., T.L. Kane, R. Bullock, and M.K. Politovich, 1999: Evidence of improvements in 
the quality of in-flight icing algorithms. Preprints, 8th Conference on Aviation, Range, and 
Aerospace Meteorology, Dallas, TX, 10-15 January, American Meteorological Society (Boston), 
48-52. 
 
Brown, B.G., J.L. Mahoney, R. Bullock, J. Henderson, and T.L. Fowler, 2000:  Turbulence 
Algorithm Intercomparison: 1998-1999 Initial Results.  FAA Turbulence Product Development 
Team Report to FAA Aviation Weather Research Program. NOAA Technical Memorandum 
OAR FSL-25, NOAA Department of Commerce, 63 pp. 
 
Doswell, C.A., III, R. Davies-Jones, and D.L. Keller, 1990: On summary measures of skill in 
rare event forecasting based on contingency tables. Wea. Forecasting, 5, 576-585. 
 
Kane, T.L., and B.G. Brown, 2000: Confidence intervals for some verification measures – a 
survey of several methods. Preprints, 15th Conference on Probability and Statistics in the 
Atmospheric Sciences, Asheville, NC, 8-11 May, American Meteorological Society (Boston), 
46-49. 
 
Kane, T.L., B.G. Brown, and B.C. Bernstein, 2000: Regional icing algorithm performance 
analysis. Preprints, 9th Conference on Aviation, Range, and Aerospace Meteorology, Orlando, 
FL, 11-15 September, American Meteorological Society (Boston), 270-273. 
 
Mahoney, J.L., J.K. Henderson, and P.A. Miller, 1997: A Description of the Forecast Systems 
Laboratory's Real-Time Verification System (RTVS).  Preprints, 7th Conference on Aviation, 
Range, and Aerospace Meteorology, Long Beach, American Meteorological Society (Boston), 
J26-J31. 
 
Mason, I., 1982: A model for assessment of weather forecasts. Australian Meteorological 
Magazine, 30, 291-303. 
 
McDonough, F., and B.C. Bernstein, 1999: Combining satellite, radar, and surface observations 
with model data to create a better aircraft icing diagnosis. Preprints, 8th Conference on Aviation, 
Range, and Aerospace Meteorology, Dallas, TX, 10-15 January, American Meteorological 
Society (Boston), 467-471. 
 
Murphy, A.H. and R.L. Winkler, 1987:  A general framework for forecast verification.  Mon. 
Wea. Rev., 115, 1330-1338. 
 
NWS, 1991: National Weather Service Operations Manual, D-22.  National Weather Service.  
(Available at the web site http://www.nws.noaa.gov). 
 

 34

http://www.nws.noaa.gov)/


Reisner, J., R.M. Rasmussen, and R.T. Bruintjes, 1998: Explicit forecasting of supercooled 
liquid water in winter storms using the MM5 mesoscale model. Quarterly Journal of the Royal 
Meteorological Society, 124, 1071-1107. 
 
Sankey, D., K.M. Leonard, W. Fellner, D.J. Pace, and K.L. Van Sickle, 1997:  Strategy and 
direction of the Federal Aviation Administration's Aviation Weather Research Program.  
Preprints, 7th Conference on Aviation Range, and Aerospace Meteorology, Long Beach, 
American Meteorological Society (Boston), 7-10. 
 
Thompson, G., R.T. Bruintjes, B.G. Brown, and F. Hage, 1997: Intercomparison of in-flight 
icing algorithms. Part I: WISP94 Real-time Icing Prediction and Evaluation Program. Wea. 
Forecasting, 12, 878-889. 
 
Wilks, D.S., 1995: Statistical Methods in the Atmospheric Sciences.  Academic Press, 467 pp. 
 

 35



 36

Appendices 
 

The appendices are attached as PDF files 
 

Apppendix 1: Brown et al. 1997 
Appendix 2: Brown et al. 1999 
Appendix 3: Kane et al. 2000 


	Abstract
	Introduction
	Approach
	Data
	Algorithms and forecasts
	Observations

	Mechanics
	Forecast/observation matching procedures
	Time window

	Verification methods
	Results of previous studies
	Brown et al. 1997
	Brown et al. 1999
	Kane et al. 2000

	Results for winter 2000
	Overall results
	Variations with valid time
	Day-to-day variations
	IIDA persistence
	Comparisons to RUC liquid water forecasts
	Sensitivity to missing data
	Verification of SLD field

	RTVS comparisons
	Overall results
	Weekly results
	Results by height

	Summary and conclusions
	Acknowledgments
	References
	Appendices

