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1. Introduction 
 

The purpose of this report is to describe verification approaches and methods that can be 
used for verification of national-scale ceiling and visibility forecasts and diagnoses. Some of 
these approaches are already being used in ongoing verification of operational forecasts, referred 
to as the Airmen’s Meteorological Advisories (AIRMETs) of instrument-flight-rule (IFR) 
conditions (i.e., IFR AIRMETs) issued by the Aviation Weather Center (AWC), by the Forecast 
System Laboratory’s Real-Time Verification System (RTVS; Mahoney et al. 1997). In addition, 
some of the methods are being used for ongoing feedback to the current automated product. The 
report considers general concepts of verification, as well as specific approaches that can be 
applied for various types of predictors and predictands (i.e., categorical, probabilistic, 
continuous). Results of a recent study regarding methods for matching forecasts and observations 
are also summarized, and the report on this topic is included in the Appendix. 

 

2. General concepts 
 
Some of the important concepts underlying the verification of forecasts are briefly 

considered here. These concepts are very important to keep in mind when designing verification 
systems and studies. Many of the ideas considered here are also presented in the verification 
literature, and are described well in such resources as Murphy (1997) and Wilks (1995). First and 
foremost, verification approaches should be statistically sound and scientifically meaningful. 

2.1 Matching forecasts and observations 
 

The initial step of creating a matched set of forecasts and observations can be one of the 
most difficult aspects of forecast verification. This process can be particularly difficult in the 
case of verification of aviation forecasts, where the observations frequently are non-standard. 
However, in order for verification results to be valid and meaningful, it is critical that the 
forecast and observed events are matched as closely as possible, in terms of time domain, spatial 
representativeness, and so on. In the case of ceiling and visibility, for example, a ceiling forecast 
might represent the ceiling at a particular grid point at a particular time. Since ceiling is observed 
only at particular airports and other locations, the matched set of forecasts and observations 
would be limited to those locations. 

2.2 Verification framework 
 

The statistical basis for forecast verification is the joint distribution of forecasts and 
observations, p(f,x), where f represents the forecasts and x represents the observations (Murphy 
and Winkler 1987). This distribution can be decomposed into two conditional distributions (the 
conditional distribution of the forecasts given the observations and the conditional distribution of 
the observations given the forecasts) and two marginal distributions (the distribution of the 
forecasts and the distribution of the observations). These distributions form the basis for 
essentially all of the summary and performance measures that are generally used for verification 
(Murphy et al. 1989; Murphy and Winkler 1992). For example, bias is the difference between the 
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mean forecast and the mean observation, which are summary measures of the marginal 
distributions of forecasts and observations, respectively. 

2.3 Dimensionality and the selection of appropriate measures 
 

The joint distribution of forecasts and observations contains all of the non-time-
dependent information about the quality of the forecasts (Murphy 1991). Thus, the 
“dimensionality” of the verification problem is the dimension of this distribution, which can be 
computed as d = n(f)n(x) – 1, where n(f) is the number of possible forecasts and n(x) is the 
number of possible observations. For example, for probabilistic forecasts of a Yes/No element 
(e.g., ceiling less than 10,000 ft), where 11 different probability values can be used, n(f) = 11, 
n(x) = 2, and d = 21. Thus, in this case, 21 different numbers are required to reconstruct p(f,x). 
This result suggests that it is very desirable to consider a variety of measures when evaluating the 
quality of a set of forecasts, to respect the dimensionality of the forecast problem. Use of a single 
verification measure to evaluate a set of forecasts generally is not meaningful. 

 
Of course, dimensionality is not the only consideration when selecting verification 

measures. Ideally, the choice of measures should be guided by the questions about forecast 
quality that are of interest. For example, if overall bias is of concern, then the mean error (ME) 
should be computed; if accuracy is of interest, then measures such as mean absolute error (MAE) 
and root mean squared error (RMSE) should be computed. In particular, different verification 
statistics measure different attributes of the quality of the forecasts. Use of this approach to 
verification represents a diagnostic verification of forecasts, which is much more informative 
than verification based on one or two “standard” measures or a single skill score. The actual 
statistics used to measure the various attributes depend on characteristics of the forecasts – i.e., 
whether they are continuous, categorical, or probabilistic. 

 
Other factors also should be considered when selecting measures for a verification 

analysis, and particularly for long-term verification studies. For example, in some cases (e.g., for 
verification of dichotomous – e.g., Yes/No – forecasts) it is possible to select combinations of 
measures that can identify superiority of one forecasting system over another (see Section 2.6). It 
also is desirable to use measures that do not encourage a forecasting system to over- or under-
forecast. 

2.4 Standards of comparison 
 

By nature, verification is a comparative process. In general, the specific verification 
values associated with a forecasting system are not meaningful or useful, without comparison to 
values associated with some other forecasting system or standard-of-comparison. Standards-of-
comparison can be used to compute skill scores, which measure the relative improvement of one 
forecasting system over another. An appropriate standard of comparison could be another 
forecasting system (e.g., the current operational forecasts) or it could be based on a basic 
standard such as climatology or persistence. For ceiling and visibility forecasts, the operational 
forecasts (e.g., IFR AIRMETs; TAFs), persistence, and climatology all appear to be reasonable 
standards-of-comparison.  
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2.5 Relationships among measures 
 

Because essentially all verification measures are derived from the joint distribution of 
forecasts and observations, it is not surprising that in many cases the different measures are 
strongly related. For example, the mean-squared error (MSE) can be broken down into several 
components, including the square of the mean error (ME) – thus, MSE can easily be dominated 
by the overall bias of the forecasts. As another example, the Critical Success Index (CSI; also 
known as the Threat Score), which is commonly used to summarize the skill of categorical 
forecasts, can be decomposed into a non-linear combination of the Probability of Detection 
(POD) and the False Alarm Ratio (FAR), as shown in Fig. 1. This figure illustrates that the 
impacts of changes in FAR and POD on the value of the CSI strongly depend on the values of 
POD and FAR (i.e., where the values lie on the curves). CSI and other skill scores and measures, 
including FAR, also are strongly influenced by the climatology, p(x) – i.e., the frequency of 
occurrence of the event of interest (Brown and Young 2000; Mason 1989). Thus, these measures 
should not be used when the climatology is variable or not estimable, and they cannot be used to 
make comparisons between forecasting systems when the verification analyses are based on 
different time periods or locations with different climatologies. 
 

 
Figure 1. Critical Success Index (CSI) as a function of Probability of Detection (POD) and 

False Alarm Ratio (FAR). 
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2.6 Quality does not equal value 
 
A common misconception that should be avoided is the idea that a forecasting system 

with a larger skill score also is more useful and possibly has greater economic value than a 
system with a lower skill score. Unfortunately, quality is not equivalent to value. In general, 
economic value is a non-linear function of quality; however, for some forecast users greater skill 
may not lead to greater value (for example, if some other forecast attribute is of greater 
importance than the measure that is being used to compare the forecasting systems). In general, 
assessment of the value of a forecasting system requires detailed examination and modeling of 
specific decision-making situations. 

 
In some limited cases (as noted in Section 2.3), it is possible to state that one forecasting 

system is superior for all users. This conclusion can be reached in the case of verification of 
dichotomous forecasts, where certain combinations of measures are sufficient to make this 
comparison between forecasts. Examples of these combinations of measures are POD and FAR, 
POD and PODn (the probability of detection associated with “No” events), and POD and p(x). 

 
In recent years, some methods have been developed to translate verification measures for 

probabilistic forecasts into measures of the economic value of the forecasts (e.g., Richardson 
2000; Wilks 2001). These approaches are based on a relatively simplistic decision-making model 
known as the cost-loss model. Essentially, the approaches allow computation of the relative 
value that would be attained by users of the forecasts with different cost-loss ratios. Although the 
approach is relatively simplistic, it provides a basic measure of potential economic value that 
should be of interest to researchers and program managers. The availability of these approaches 
provides another incentive for formulation of probabilistic forecasts. 

2.7 Demonstrating true improvements in forecasting systems 
 

Demonstrating superiority of one forecasting system is a desirable result of verification, 
when evaluating improvements to a forecasting system. However, it is important to recognize 
that this goal generally is very difficult to achieve. A common frustration is the fact that 
improvements in one measure of quality generally are associated with degradations in another 
measure (e.g., the common trade-off between POD and FAR). 

 
A related issue that will be of concern in verification of national-scale ceiling and 

visibility products is the stringency that is associated with verification of forecasts on a grid, at 
least as they are commonly verified. In particular, standard approaches – in which forecasts at 
particular points are compared to observations at those points – do not take into account minor 
errors in location or timing. Forecasts are penalized equally for small errors and large errors. It 
will be desirable to investigate and develop alternative approaches that are more diagnostic and 
informative. 
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2.8 Other issues 
 

The quality of forecasts generally varies from day-to-day. Moreover, as noted earlier, 
some verification statistics vary according to the frequency of the forecasted “event,” which also 
can vary a great deal from day-to-day (e.g., the occurrence of low ceilings is more common on 
days that are strongly influenced by frontal systems). Thus, it is important to examine variations 
of the verification statistics from day-to-day, as well as considering long-term values of the 
measures across a season or other period. Experience with other types of forecasts has indicated 
that the verification statistics for some forecasting systems can be less variable than the statistics 
for other forecasting systems. These differences can be important to users; for example, having a 
consistent forecasting system may be more important to some users than having a better overall 
score. That is, it may be more important than having a system that occasionally is right on the 
mark, which also sometimes completely misses the mark.  

 
Variability also is an important factor in defining confidence intervals for the verification 

statistics. Confidence intervals can help to determine if the verification statistics for two different 
forecasting systems are significantly different from each other (e.g., whether the values for one 
system are significantly better than the values for another system). Basic confidence intervals can 
be defined for statistics based on verification of dichotomous forecasts (Seaman et al. 1996) and 
these approaches have been extended to forecasts with more complicated sampling problems 
(Kane and Brown 2000). Extensions to other types of forecasts (e.g., continuous, probabilistic) 
also should be investigated. 

 
One issue that is of particular concern for verification of ceiling and visibility forecasts is 

the fact that these phenomena generally are not continuous in spatial extent.  This issue is related 
to the problems associated with the stringency of common verification approaches. Some 
investigation and testing of methods will be required to develop approaches that appropriately 
take this variability into account. 

 

3. Matching forecasts and observations 
 

At least initially, METARs will provide the basic data for verification of the national-
scale ceiling and visibility products. METARs generally provide observations of ceiling and 
visibility conditions once per hour. However, special reports are sometimes issued (e.g., when 
conditions are changing), and not all stations report consistently. Thus, the number of reports 
varies from hour-to-hour as stations report or not. Depending on the consistency of reports, it 
may be desirable to compute statistics based on (a) all available stations and (b) a subset of 
stations that reports consistently (to provide a stable dataset). 

 
To start with, the matching of forecasts and observations will be “driven” by the METAR 

stations in order to avoid matching grid point forecasts to METARs that are located far from the 
gridpoint. In particular, the observations at each METAR location will be matched to the 
forecasts from the nearest grid point. It also will also be of interest to consider additional 
gridpoints (e.g., the four closest gridpoints), to consider the impacts of local variability on the 
verification results. 
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The approach described above is based on evaluations at individual METAR locations. 

However, the METAR stations are not distributed evenly across the continental United States. In 
fact, some regions have a dense network of stations, whereas other regions are sparsely covered. 
The matching approach described above thus places greater weight on regions with dense 
coverage. An alternative approach was investigated in which a grid is overlaid on the 
observations. With this approach, the stations and forecasts within a grid area are used to assign a 
single forecast and observation to that grid area. Verification statistics associated with each of 
the methods were compared in a study of IFR AIRMET verification statistics, which is described 
in the Appendix. The results indicated that the verification statistics are relatively insensitive to 
the choice between these two approaches: both POD and FAR were only decreased a small 
amount when the gridded method was used. 

 

4. Verification measures and approaches  
 
As was indicated earlier, appropriate verification approaches and measures depend on the 

definition of the forecast event. In particular, forecast attributes are defined differently depending 
on whether the forecasts are continuous, categorical, or probabilistic. We expect, however, that 
the national-scale ceiling and visibility forecasts will be formulated in all three ways, at some 
point in the development process. Currently the system produces continuous values of ceiling 
and visibility, and it is important to evaluate these basic forecast values. Users are interested (for 
example) in the question of IFR vs. non-IFR conditions, and they may also be interested in 
specific categories of ceiling and visibility. Moreover, the operational forecasts (e.g., IFR 
AIRMETs) essentially are categorical. Thus, it is important to evaluate the forecasts as 
categorical predictions. Finally, we anticipate that it will be desirable in the future to provide 
probabilistic forecasts of ceiling and visibility categories. Thus, it is important to consider 
appropriate verification measures for probabilistic forecasts. 

 

4.1 Methods for continuous variables 
  
 Verification of continuous predictands with corresponding continuous observations 
generally involves a fairly direct comparison of forecasts and observations. Attributes that are of 
interest include overall bias (measured by ME) and accuracy (measured, for example, by MAE 
and RMSE). Recall that RMSE is partially a function of ME. Other components of this measure 
include the variance and covariance of the forecasts and observations. The correlation coefficient 
frequently is computed for these types of variables; however, this measure ignores biases in the 
forecasts. Skill scores can be computed based on the RMSE (or other measures) using the 
standard formula for a skill score. The skill score essentially measures the percentage 
improvement of one forecasting system over another, relative to the value associated with perfect 
forecasts. Approaches that are more diagnostic include examination and display of the 
conditional quantiles of observations given forecasts (e.g., Murphy et al. 1992). These statistics 
represent changes in the distributions of observations as the forecast changes. Of course, the 
scatterplot is the simplest – and one of the most informative – displays representing the quality of 
continuous forecasts. 
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4.2 Methods for categorical forecasts 
 

Categorical forecasts indicate that a particular category of observation will occur, such as 
Rain/No Rain. Categorical forecasts can either be based on ordinal categories (e.g., for cloud 
amount) or nominal categories (e.g., Yes/No). In the simplest (and most common) case there are 
two categories of forecasts and two categories of observations (i.e., the 2x2 case). Most measures 
that have been developed to evaluate categorical forecasts are designed for the 2x2 case; 
however most of them can be generalized to the n x m case either directly or by subdividing the 
table and combining categories to create various sets of 2x2 tables. Verification of categorical 
forecasts is based on examination of the frequencies of occurrence of various pairs of forecasts 
and observations (e.g., Table 1). These counts represent the joint distribution of forecasts and 
observations. 
 
Table 1.  Basic contingency table for evaluation of dichotomous (e.g., Yes/No) forecasts. Elements in 

the cells are the counts of forecast-observation pairs. 

Observation  
Forecast Yes No 

 
Total 

Yes YY YN YY+YN 
No NY NN NY+NN 

Total YY+NY YN+NN YY+YN+NY+NN 
 
  Some of the verification measures that are available for evaluation of categorical 
forecasts (and which may be appropriate for evaluation of ceiling and visibility forecasts) are 
listed in Table 2. PODy and PODn are estimates of the proportions of Yes and No observations 
that were correctly forecasted, respectively. Together, PODy and PODn measure the ability of 
the forecasts to discriminate between Yes and No observations. The True Skill Statistic (TSS) 
(Doswell et al. 1990), also known as Hanssen-Kuipers discrimination statistic (Wilks 1995), 
summarizes this discrimination ability. Note, however, that it is possible to obtain the same value 
of TSS for a variety of combinations of PODy and PODn. Thus, it always is important to 
consider both PODy and PODn along with TSS.  FAR estimates the frequency of Yes forecasts 
did not verify. CSI is the proportion of correct Yes forecasts, relative to the number of times the 
event was forecasted to occur or occurred. As noted earlier (Section 2.5), CSI is a nonlinear 
function of PODy and FAR. Like the TSS it should not be considered alone, without also 
examining PODy and FAR. One unfortunate aspect of the CSI is that it rewards over-forecasting. 
The Gilbert Skill Score (GSS) attempts to compensate for this effect by subtracting the number 
of correct Yes forecasts that would be expected to occur by chance. Similarly, the Heidke skill 
score (HSS) corrects the % Correct by subtracting the number that would be expected to be 
correct by chance. Finally, the % Area statistic is a measure of the forecast coverage. This 
statistic can be used as a surrogate indicator of over-warning. 
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Table 2.  Verification measures for categorical forecasts. 

Statistic Definition Description 

PODy YY/(YY+NY) Probability of Detection of “Yes” observations 

PODn NN/(YN+NN) Probability of Detection of “No” observations 

TSS = HKSS PODy + PODn – 1 True Skill Statistic; Hanssen-Kuipers Skill Statistic

FAR YN/(YY+YN) False Alarm Ratio 

CSI = TS YY/(YY+NY+YN) Critical Success Index; Threat Score 

GSS=ETS (YY – C1)/(YY+NY+YN-C1) Gilbert Skill Score; Equitable Threat Score 

HSS (YY+NN-C2)/(YY+YN+NY+NN-C2) Heidke Skill Score 

% Area (Forecast Area) / (Total Area) x 100 % of the area of the continental U.S. where IFR 
conditions are forecast to occur  

 

4.3 Methods for probabilistic forecasts 
 

Categorical forecasts can be considered to be probabilistic forecasts that are completely 
certain. In this case, the forecasts can take on probability values between 0 and 1. In some 
situations, such as for human forecasters, the forecast values are limited to a discrete set of 
specific values. In contrast, the observations take on only the values 0 and 1 [i.e., either the event 
occurs  (x = 1) or it does not occur (x = 0)]. Probabilistic forecasts can also be associated with 
multiple categories (e.g., varying categories of cloud cover).  

 
Accuracy of probabilistic forecasts can be measured using the Brier score, which is a 

squared error measure like the MSE. Thus, this score can be decomposed in much the same way 
as the MSE. The Brier Score typically is translated into a skill score, generally with the sample 
climatology as a standard of reference. A comparable score – the Ranked Probability Score –  is 
also available for multi-category probabilistic forecasts. This score can also be decomposed into 
more basic elements. 
 

Another approach to verification of probability forecasts is based on Signal Detection 
Theory (SDT). The underlying basis for this approach is to select different probability thresholds 
to define Yes/No forecasts and to evaluate the resulting categorical forecasts associated with 
each threshold. The curve joining the (1-PODn, PODy) points for different probability values is 
known as the “Relative Operating Characteristic” (ROC) curve in SDT. The goal is for the ROC 
curve to lie close to the upper left corner of the diagram. The area under this curve is a measure 
of overall forecast skill (e.g., Mason 1982), and provides another measure that can be compared 
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among various forecasts. A forecast with no skill has an ROC area of 0.5 or less. One concern 
associated with use of the ROC is that it does not penalize forecasts that are not calibrated or 
reliable. 

 
Forecast calibration can most easily be examined through a reliability diagram, relating 

particular forecast probabilities (x-axis) to the frequency of occurrence of the event of interest on 
occasions when that probability was used (y-axis). The curve for completely reliable forecasts 
lies directly on the diagonal. A more complete picture of forecast quality is provided by the 
“Attributes” diagram, which includes reliability as well as a variety of other measures related to 
the joint, conditional, and marginal distributions (Wilks 1995). An opposing diagram – the 
discrimination diagram – can be used to examine the distribution of forecast probabilities given 
particular observations (i.e., Yes and No; e.g., Murphy and Winkler 1992).  
 

5. Current RTVS verification approaches for IFR AIRMETs 
 

The verification approaches that have been used in RTVS to evaluate the IFR AIRMETs 
since 1997 in general are relatively simple and straightforward. These basic approaches are 
described below.  Enhancements to the approaches are desired. In particular, it will be desirable 
to develop a methodology for evaluating these forecasts so that the results are comparable to the 
results associated with the automated products. 

5.1 Observations and forecasts 
 

The METAR surface observations are used to indicate IFR and non-IFR conditions.  No 
attempt is made to establish a consistent table of METAR reports.  All stations that report each 
hour are used in the verification process.  

 
The IFR AIRMET forecasts are areal text forecasts of IFR conditions, where ceilings less 

than 3,000 ft and/or visibility less than 3 miles are expected.  These forecasts are not issued 
unless the areal extent of the forecast region exceeds 3,000 square miles.  The polygon, defined 
by the from-line that is specified in the IFR AIRMET, is verified without the inclusion of 
specific details that are outlined in the free-form text portion of the AIRMETs.   In the evaluation 
of the IFR AIRMETs by RTVS, the forecasts and observations are treated as dichotomous 
Yes/No forecasts. 

5.2 Matching forecasts and observations 
 

  Within RTVS, the IFR AIRMETs are evaluated two ways: as an hourly forecast 
(observation-based verification) and as a 6-h forecast (forecast-based verification).   
 
  When IFR AIRMETs are evaluated as an hourly forecast, the METAR reports are 
examined hourly to determine whether the report meets AIRMET criteria for IFR conditions 
(ceilings less than 3,000 ft and/or visibility less than 3 miles).  The METAR report is then 
evaluated to determine whether it falls within the AIRMET boundary.  A single observation from 
one METAR station is used each hour to evaluate the AIRMET.  This method is different from 
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the methods used to evaluate the 6-hourly AIRMETs, described below.  If the METAR report 
falls within the AIRMET boundary and meets the AIRMET criteria, then a YY pair is recorded. 
If the METAR report falls outside the AIRMET boundary and meets AIRMET criteria, then a 
NY is recorded, and so on filling in the pairs of the 2x2 contingency table (Table 1). 
 
  When the IFR AIRMETs are verified as a 6-h forecast, only one METAR observation 
over the 6-h period is used to verify the AIRMET over the valid period.  For instance, if METAR 
station SLC reports IFR conditions within 3 different hours over the 6-h AIRMET valid period, 
SLC is used only once as a Yes observation to verify the AIRMET.  If SLC never meets IFR 
criteria within the 6-h AIRMET valid period, then only one No observation is recorded.  This 
approach was designed to meet the needs of the AIRMET forecast.  
 
 A third approach for verifying the AIRMETs, where the METAR reports were gridded over 
the national domain for consistency, was tested in RTVS.  The results from this test are described 
in the Appendix. 

5.3 Statistics generated by RTVS 
 

 The statistics computed by RTVS are consistent with those summarized in Table 2.  
Displays and contingency tables are available through a Web-based interface that can be 
accessed from http://www-ad.fsl.noaa.gov/afra/rtvs; link to Real Time Verification System. 

5.4 Issues 
 
 Several issues associated with the verification approaches used in RTVS are apparent.  
First, the details in the IFR AIRMET forecast are difficult to evaluate since the information is 
difficult, if not impossible, to decode.  Second, since the forecasts are not consistently distributed 
throughout the forecast domain, the FAR values are lower than they would be if the forecasts 
were evenly distributed.  Third, the observations are not smoothed to accommodate the 3,000 sq. 
ft AIRMET criteria. Ideally, development of methods to evaluate the automated products will 
also lead to improvements in the methods used for the IFR AIRMETs. 
 

6. Issues 
 

One aspect of the national-scale products that has not yet been addressed is the diagnosis, 
which currently is based to a large extent on the METAR observations. A key question relative 
to the diagnoses is how well they capture the correct ceiling and visibility in locations without 
observations. One approach to this issue is to create a large set of forecasts with one or more 
stations removed from the analysis. Then, the data for the stations that were removed can be used 
to verify the diagnoses. This issue also relates to a general concern that the observations have 
relatively little spatial continuity, so that the characteristics of the ceiling and visibility between 
stations are unknown. This uncertainty limits the scope of the verification that be accomplished 
without additional data. 
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It was noted earlier that it would be desirable to develop verification methods that are 
more diagnostic. Such methods would make the verification results more meaningful for forecast 
developers as well as managers. In addition, it would be desirable to begin investigating the use 
of remote-sensing (e.g., satellite) data and pilot reports as verification tools for ceiling and 
visibility. However, use  of these types of data will require time  to test the methods based on 
them. 

 

7. Summary 
 

This report has presented a smorgasbord of ideas for possible verification approaches that 
can be taken as the national-scale Ceiling and Visibility product matures. However, it is 
important to note that – just as algorithms and forecasting systems evolve and improve with time, 
so too do verification approaches and methods. Thus, development of verification methods and 
approaches to keep up with the algorithm development will require time to develop and test new 
methods. In addition, we view this as a “living document” that will evolve as our knowledge of 
the ceiling and visibility verification problem expands. 
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1. Introduction 
 
 Two different verification approaches for evaluating forecasts of ceiling and visibility 
Airmens’ Meteorological Advisories (AIRMETs) were evaluated from 1 – 31 January 2001.  The 
purpose for the evaluation was to determine whether the current station-by-station approach used 
in the Real-Time Verification System (RTVS) to evaluate the IFR AIRMETs was impacting the 
False Alarm Ratio (FAR) calculation because of the inconsistent spacing of the METAR stations.  
Therefore, in hopes to alleviate the inconsistent spacing problem, a gridded approach was 
applied to the RTVS and tested. Statistical verification results from the two approaches are 
summarized in this report. 
 
2. Forecasts and Observations 
 
 The IFR AIRMETs, evaluated using the two verification approaches, are human generated 
text forecasts that are issued when ceilings are less than 1,000 ft and/or visibility is less than 3 
miles.  These forecasts are issued every 6-h, but are amended when weather conditions meet or 
exceed the AIRMET criteria.  In this study, only the 6-h AIRMET forecasts were considered, 
because: 1) the methods, when applied to the 6-h AIRMETs, were less complicated than for the 
amended AIRMETs and 2) the relative differences in results should be similar for the amended 
forecasts.  
 
 Surface observations of ceiling and visibility (METAR reports) are used to verify the IFR 
AIRMETs.  In particular, observations within the 6-h valid period of the AIRMET were used to 
verify the forecast.  All observations, including specials, during the 6-h period were considered 
in the verification procedures.  
 
3. Matching Approaches 
 
 In the current station-by-station approach, each METAR station is considered over the 6-h 
valid period of the AIRMET.  If the observation meets the AIRMET criteria just once within the 
6-h period and falls within an AIRMET boundary, then a YY (forecast/observation) pair is 
assigned to that observation.  If the observation never meets the AIRMET criteria within the 6-h 
period and falls within the AIRMET boundary, then one YN pair is assigned, and so on, 
completing the standard 2x2 contingency table. 
 
 The second verification method involves mapping the METAR observations to a 40-km 
grid prior to generating the forecast/observation pairs.  Each METAR station is assigned to a 
particular grid box within the national domain.  In some instances, a grid box could contain 
as many as six METAR stations.  Instead of using each individual METAR station to obtain 
the forecast/observation pair, a pair is generated for each grid box.  For instance, if one 
observation within the grid box meets the AIRMET criteria and the grid box is included inside 
an AIRMET, a YY pair is assigned to that grid box.  As a further example, if six METAR 
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stations fall within one grid box and 3 of the stations meet the AIRMET criteria, a single Yes 
observation is assigned to the grid box.  This approach differs from the current station-by-
station method in which 3 Yes observations and 3 No observations would be assigned to the 
grid box. A Yes forecast would be assigned to the grid box if any part of it is covered by an 
AIRMET. In this way, one of the possible forecast/observation pairs (YY, YN, NY, or NN) is 
assigned to each grid box.  
 
 
4.  Verification Measures 
 

A summary of the verification measures used to evaluate the IFR AIRMETs is shown in 
Table 1. 
 
 

Table 1.  Verification statistics used in this study 

Statistic Definition Description 

PODy YY/(YY+NY) Probability of Detection of “Yes” observations 

PODn NN/(YN+NN) Probability of Detection of “No” observations 

FAR YN/(YY+YN) False Alarm Ratio 

CSI YY/(YY+NY+YN) Critical Success Index 

Bias (YY+YN)/(YY+NY) Forecast Bias 

TSS PODy + PODn – 1 True Skill Statistic 

Heidke [(YY+NN)-C1]/(N-C1), 
where 

N=YY+NY+NY+NN 

C1=[(YY+YN)(YY+NY) + 
(NY+NN)(YN+NN)] / N 

Heidke Skill Score 

Gilbert (YY-C2)/[(YY-
C2)+YN+NY], 

where 
C2=(YY+YN)(YY+NY)/N

Gilbert Skill Score 
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5. Results 
 
 The PODy and FAR values computed for the IFR AIRMETs (with no amendments) using the 
station-by-station verification approach (current method) are compared to the results generated 
using the gridded approach and are shown in Figs. 1 and 2, respectively.  The daily statistics 
shown in the figures were computed from the forecast/observation pairs accumulated for all 
AIRMET issue times from 1 –31 January 2001.  As shown by the results in the Figs., the 
differences in the PODy and FAR values associated with using the differing methods is small 
and confidence intervals for the values indicate the differences are not statistically significant, 
although some daily differences are larger than others. 
 
 Overall results computed for the 1-month period are shown in Table 2.  Differences in the 
overall PODy, PODn, and FAR are very small, and the skill score (CSI, HSS, and TSS) values 
based on the two methods are almost identical. The PODy values actually decrease slightly, by 
less than 0.03, when the gridded method is applied.  Similarly, the FAR values decrease for the 
gridded method, but by only 0.02.  Differences between the CSI, TSS, and HSS values are 0.01 
or less.  
 

  

 

 
Fig. 1.  Daily time series of PODy from 1-31 January 2001.  Values computed using a
station-by-station method (‘squares’) and a gridded approach (‘triangles’) are shown. 
Values were computed by accumulating pairs for all AIRMET issue times every day.  
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Table 2.  Overall results for the IFR AIRMETs from 1-31 January 2001 generated using the 
current station-by-station verification method and the gridded method. 

Fig. 2.  Same as Fig. 1, except for FAR. 

Method Statistic 
 PODy PODn FAR CSI TSS HSS Bias 

Current 
0.73 0.86 0.37 0.51 0.59 0.56 1.2 

Gridded 0.70 0.88 0.34 0.51 0.58 0.57 1.1 
 
 
6. Recommendations 
 
 In summary, the differences in the statistical results for the IFR AIRMETs computed 
using the current station-by-station method and the gridded method are very small.  Therefore, 
since the benefits of implementing the gridded approach do not out weigh the time and effort it 
takes to implement a new approach into RTVS (e.g., implementing the new approach system 
wide, setting up new real-time processes, making a new direction structure, gathering 
historical data, re-running all historical data to reflect the new approach, and changing the 
database and graphical user interface to reflect these changes), we recommend that the 
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current verification approach remain as the standard of comparison until another approach is 
proven to provide added benefit to the verification of the IFR forecasts.  
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