GPGPUs for High Performance
Computing

Mark Govett

National Oceanic and Atmospheric Administration
Earth System Research Laboratory

Outline

* Background

Organizational Structure

* NOAA

— National Weather Service

e National Centers for Environmental
Prediction (NCEP)

— Oceanic & Atmospheric Research

e Earth System Research Laboratory
— Global Systems Division
» Advanced Computing Section

— NOAA Environmental Satellite Data and
Information Service (NESDIS)

— National Ocean Service

OPERATIONS

RESEARCH

g 34 400,
Lt Sa,.
. .

. +
-)
. s
: -
I3 "

.
. >
‘. .
. o
TH

What is Numerical Weather
Prediction?

B Weather vs. Climate
M |s it going to rain tomorrow?
B Will the next 10 years be warmer than the last
10 years?
B NWP = computer simulations behind
weather forecasts

B National Weather Service forecasters use NWP
models for guidance

B Slow but steady forecast improvements
since the “birth” of NWP in the 1950s

§ 29 e,
s Sa,.
5 <
. +
. N
" .
. ¥
¥ .
o]
. O -
s o
o /
. "
ser

80.0
o
-
70.0 SN e,
._,o"‘
60.0 %k e
S W e
» »
> o
5 0 . 0 /' v— - P T S PP “-’""
-k o 1§ Years
P ol .
40.0 - e o
e P a
30.0
»> _.--‘ ‘/
¢
20.0
1B BM B EM coc 1M CYBER CRAY CRAY IBM BN
700 704 700 Med 0 3015 206 Y-MP €20 P CCs
CTTTT T ! T 11
0.0 ...
1955 1960 1965 1970 1975 1980 1985 1990 1995 2000

[100 * (1-S1/70) Method]

—— 36 Hour Forecast

QE A7 He

NCEP Operational Forecast Skill ‘
36 and 72 Hour Forecasts @ 500 MB over North America Y —

—— 72 Hour Forecast

Thanks to Bruce Webster, NOAA

NCEP C entral Operations January 2006

/4315'3

What is Numerical Weather
Prediction?

* Many scientific challenges

— Hurricane track forecast good but not
hurricane intensity forecast

— Aviation weather
* Regional to local forecasts
* Impact on flight delays

— Fire weather

* Understanding local, short range weather

ow A4 ba,
" s
. v
®)
-)
. .
N *
¥ .
1
N >
N .
" w4
T

e dt Lodumh S N TS yivVaiiia
Ohio

Hurricane lrene 7- =
Day Forecast

e Forecast valid@
8/21/2011 12Z UTC

e Black line s
observed track

— White diamonds are

storm location at 00z
UTC

 Green & cyan lines
are forecast tracks

vﬂf‘rom NWP models

#
- +
-
" .
T »
3 H
0
. O -
. o
o /’
.
wen ¥

Hurricane Irene 5-: ..

Day Forecast

] e earbetac i KESTRS, L,
A4 J y - G
R 3t :Lm LA _‘.’,“_1;

o

- —

 Forecast valid@
8/23/2011 12Z UTC

.‘.
T"oeen ¥ <

. s M)
Hurricane Irene 3- « '

Day Forecast St/
 Forecast valid@ w

8/25/2011 127 UTC i A1
* Forecast P R Wi
uncertainty i /
(estimated from S ,//'
spread of forecast /.,.J
tracks) already a0 W
smaller than the "'; =
hurricane |
me Nirone
o

What is Numerical Weather
Prediction?

B NWP is a big consumer of HPC
B Forecast models must run 50x faster than real-time

B “Global” vs. “regiona
B Regional = higher resolution over smaller domain
B Because computers are never big enough
B “Dynamics” vs. “Physics”
B Dynamics predicts the evolution of the explicitly
resolved flow

B Physics estimates the effects of subgrid-scale
processes (e.g. clouds, convection at traditional
global resolutions > 10km)

III

£ 2=
k-
T
- F
| =
ah
)%
g o
Rll
(e
hR
6 D
£8
mp“
[=
2 5
b
g 3
s
s 0
=

t weather

impac

idance for h

Short-range gu

- -

~ m @)

s -~ 0 c

= ml:.mae o
I o9 o
mnlfngn-m “-W

o] OOOEE -]
—mo s 03 - o2
v O IGtm s £
c ~0 N ()
VeosooxYn T
No2cd - F cY
>0g. D€« c >
coccsge 2
-) & o r—
B35Sty 23
3eE="F =0

2 >> = ch £

wWeco gy .9

(" - 17,1

- [oa) <

GLOBAIXSYSTENMSIDIVISION

SERVICE & STEWARDSHIP

4]
&}
=
W
~
Q
L]

Why have a Rapid Refresh or HRRR?

e Provide high-frequency (hourly) mesoscale analyses, shor
range model forecasts

e Assimilate (“merge”) all available observations into single
physically consistent 3-d grid such that
forecasts are improved

e Focus on sensible weather, aviation and other hazards:
— Thunderstorms, severe weather, winter storms
— Detailed surface temperature, dewpoint, winds
— lcing, ceiling and visibility, turbulence
— Upper-level winds

e Users: “Situational
- N\{Viand o’::}lhetrhfor(:casterst ; Awareness
... — aviation and other transportation ”
@ severe weather forecasting Model
— hydrology, energy (load, renewable) ’

Model Development Activities

* Regional, Local Models (1-5 KM)
— NOAA HRRR, WRF-ARW, WRF-NMM, etc
* Hurricanes, Aviation, Fires, Chemistry / Ash

— Ensembles (15-30KM)

* Global Models (10-30 KM)
— NOAA FIM model
— Improved hurricane forecasts

Computing Requirements

— 3000 cores:
e 15KM Global FIM

— 126,000 cores

e 21 member 30 KM ensemble

g 240400,
s Sa.
5
. *
. N
" .
: '
¥ .
.
4 'l-
o /
. "
"er

Global Cloud Resolving Models (GCRM)

< 2KM horizontal resolution

e Benefits

— Weather and climate scales (5-100 day forecasts)
* Improved hurricane track and intensity prediction
* Regional climate impacts

* Active developments in the research community
— NICAM: University of Tokyo
— GCRM: Colorado State University
— GFDL: Finite Volume Cubed Sphere
— NIM: NOAA Earth System Research Laboratory

* Computing Requirements
— CSU’ s 4KM GCRM was run on 80,000 cores of DOE Jaguar

w * Simulations ran at ~50 percent of real-time

Why FORTRAN?

e De-facto language of NWP
— # of atmospheric modelers >> # of SEs in
domain
* Good language for HPC

— “Formula-translation”
* Especially multi-dimensional arrays

— 50+ years of automatic optimizations

— Strong support for efficient floating-point
operations

g 240400,
Lt Sa,
. v
®)
-)
. .
N *
¥ .
9
e .
N >
N .
" st
sen ¥

Outline

e GPU Hardware

Graphics Processing Unit (GPU)

* CPU co-processor for compute intensive calculations

— Focused on supporting video game applications
— NVIDIA sold over 100 million GPUs in 2010

* Low cost, high performance

— Appear on most desktops and laptop systems

e Supports hundreds to thousands of Ilghtwelght CPU
cores on a single chip

Xbox 360

AMD Radeon

GPU / Multi-core Technology

 NVIDIA: Fermi chip first to support HPC
— Formed partnerships with Cray, IBM on HPC systems

— #1, #3 systems on TOP500 (Fermi, China)

 AMD/ATI: Primarily graphics currently
— #7 system on TOP500 (AMD-Radeon, China)
— Fusion chip in 2011 (5 TeraFlops)

1

1

1

1

1

1

1

1

: GPU: 2008
| 933Gflops
1

1

1

1

1

1

PG

< 1.2 TeraFlops 250 1

@ < 8xincreaseindoublp =

#LIE8 precision =

<> 2x increase in memdry £ =t
" bandwidth 5

| < Error correcting =

& °| memory

CPU:2008

lllllll

\

—

"

&

. A W,

The desire for visually complex and realistic games is

driving this market, not HPC

‘Super Mario Galaxy Screenshot - http://top10kid.com/2009/08/13/top-10-most-anticipated-games-of-2010/

5 .

. +
. N
" .

: '
¥ .
.
- ¢
s -
o /
. "
"en

CPU / GPU Hardware Comparison
(by the numbers)

 GPU is ~8x faster, requires 2x more power

Peak
FlopsDP | MemBW | Memory o
Card (GF) (GB/s) GB ECC? Power
(W)
685 176 2 250

AMD

970 2010 1536 2700 Partial
Nvidia
1Y 280 2008 240 933 90 141.7 1 No 236
MfiElz 2010 448 1030 515 144 3 Yes 238
C2050
Nvidia
209 2011 512 1331 665 177 6 Yes 225
el 2012 32 > 1000 ?? ?? 1-2 Unk ?27?
MIC
Intel

2010 6 160 80 26.4 48 Yes
Westmere

*
"
ouea ¢ Y

PetaFlop Computing

- 2.3 PetaFlops

- 250,000 CPUs

- 284 cabinets

- 7-10 MW power

- Cost: ~ S100 million
- Building: $75 million
Reliability in hours

DQOE Jaguar System

Equivalent GPU System

- 2.3 PetaFlop

- 2000 Fermi GPUs

- 20 cabinets

- 1.0 MW power

- Cost: ~ S10 million
- Building: $5 million
- Reliability in weeks

e Large CPU systems (>100 thousand cores) are unrealistic for
operational weather forecasting

— Power & Cooling: ~ 10x

— Reliability: hours versus weeks Valmont
Power Plant
_ .~ ~200 MegaWatts
cost: 10x Boulder, CO

* ~15x including facilities cost

p AT
. g
-
. .

B +
o "
. s
x *
< 2
* .
t .
- £

4
N o
TSR L

Lo I
2 JESRIE
YS'TEMS DIVISION]

CPU — GPU Comparison

* CPUs focus on per-core performance

— Chip real estate devoted to cache, speculative logic
— Westmere: 6 cores, 160 Gflops, 120 Watts (~1 GFlop /Watt)

* GPUs focus on parallel execution
— Fermi: 512 cores, 1300 Gflops, 225 Watts (~5 Gflops / Watt)

GPU: Fermi (2010)

CPU: Nehalem (2009)

i § Core Core

Outline

* GPU Programming Environment

ow A4 ra,
i1,
-
. .

o A
o "
. s
x *
< 2
¥ .
t .
- £

4
N o
TSR L

GPU Programming Environment

* Graphic Processing Unit

— Co-processor to support high-end graphics
* Video games, Xbox, etc
* Millions sold annually

— Languages tailored for video graphics operations
* Shaders (Direct3D, OpenGL)
 Difficult to adapt for scientific computing

e General Purpose Graphics Processor Unit (GPGPU)
— NVIDIA developed CUDA

* Enable more realistic games in terms of physical calculations
— Eg debris, smoke, fire, fluids other special effects

* High level language based on C + GPU extensions
— Copying data between CPU and GPU

— Invoking GPU device
— Defining parallelism

g 240400,
Lt Sa,
. v
®)
-)
. .
N *
¥ .
.
N >
N .
" w4
T

Fermi Computing Environment

e Work Scheduler: | insiruction Cache |

Warp Scheduler | | Warp Scheduler |

|
— Divides up blocks of work, sends to SMs | Dispateh Unit | Dispateh Unit |

Register File (32,768 x 32-bit)

e 16 Streaming Multiprocessors (SM)
— Executes one or more blocks of work

e 1-8 blocks can execute almost SFU

simultaneously

3

— Dependent on finite resources available
on the SM

* Blocks are divided into warps

SFU

aa|a |B R|R
MBI

=
@
-

— Unit of execution SFU

* 32 cores execute in lock step

— Fast (1-2 cycles) context switching
between “ready” warps

allallal|lal|d||a]|la
MR

SFU

=
@
-

» Effective at hiding memory latency

Interconnect Network)

64 KB Shared Memory / L1 Cache

| Uniform Cache |
ELEEAL YSvTEMS DIVISION,

o2
-
-
& 2
- "
. "
K, 4
: *
. N
) H
t 3
D, £
) *
LT

Execution Example

— Each point in A,B are updated almost simultaneously
by 16 SMs, operating on 1/16t" of the work
* Blocking over horizontal

* Threading over vertical
— 3 warps of 32 threads each

do i = 1, 100 !blocking

do j = 1, 10000 !blocking i

do k =1, 96 !threading column 1] J
a(k,i,3) = b(k,1,J)

enddo warp 3

enddo

warp 2

enddo

warp 1

Execution Example (CUDA)

Fortran CUDA
real a(96,100,10000) float a[96*100%*10000]
real b(96,100,10000) float b[96*100%*10000]
do i =1, 100 i = blockIdx.x + 1;
do j =1, 10000 j = blockIdx.y + 1;
do k =1, 96 k = threadIdx.x + 1;
a(k,i,3) = b(k,1i,3) a(MACRO(i,j,k)) =
enddo b(MACRO(k,1,3))
enddo
enddo

NOTE: MACRO refers to a C pre-preprocessing
macro that collapses the multi-dimensional
array reference to a single dimension

g 240400,
Lt Sa,
. v
®)
-)
. .
N *
¥ .
.
N >
N .
" w4
T

ELEEAL DIVISI@N

SM Resources

e Limits the number of blocks that can be
stored and queued for execution in the SM

(max of 12)
— 32K 32-bit registers SM Active Queue
— 64K shared memory / cache : wl : w2 : w3 : El
2
| | | | b3
GPU Kernel Resources # Blocks for each SM | | | |
16K shared 4 : : : :
100 registers / thread
96 vertical levels 32000/ (100 * 96) => 3 : : : :

— Solution: Smaller, simpler GPU kernels reduce

resource use

e Data reuse must be considered too

Application Performance

GPU Multi-layer Memory
GPU Device

e 20-50x is possible on highly
scalable codes
* Efficient use of memory is critical | Block(o,0f Block (1, 0f
to good performance
— 1-2 cycles to access shared

memory & registers * * *
— Hundreds of cycles to access

’

glObaI memory Thread (0,0§ = Thread (1, 0} Thread (0, 0§ = Thread (1, 0]
CPUH
Shared 16K 64K =
Constant 16K 64K

a

Global 1-2GB 4-6GB

Efficient Memory Access

* Organizing data according to how the gpu
will access and use it is very important

* Coalesced Loads and Stores
— For global memory access k

— Data that is contiguous in memory

required by adjacent threads i .
j

/ Example Tg;‘_"“g“ g \
Threading over k, and referencing arrays 13‘3‘ S| warp3
L] L] L] L] !
asa(k,i,j)ratherthana(i,j, k)allows 192>
c warp 2
global memory loads to be coalesced which J P
can yield more than a 10x performance boost. y - warp 1

\ TO ->

A
/)

/ \
ELREAL SYSTEYS ISR

§ 29 e,
L va,
5 .

. +
K N
" .
H '
¥ .

.
- ¢
s -
o /
. "
"en

GPU Parallelization Approaches

* Accelerator Approach
— Target select routines for acceleration
— Copy between CPU and GPU can be significant
— Can be a step-wise approach to parallelization

Accelerator Approach Whole Model Approach

L T == physics E
w physics

* Whole Model Approach

— Keep data resident on the GPU

 Communications only needed for input, output and for
inter-process communications

— May requires code conversion, code restructuring or
AW rewriting

»
o
: w '
< 2
* .
t .
- £
4
N o
TSR L

GPU Programming Approaches

* Language Approach
— CUDA, OpenCL, CUDA Fortran, Python, Matlab

— User control over coding and optimizations
* Vendor specific optimizations
* May not be portable across architectures

— Requires that separate versions be maintained
* In practice this rarely works — too costly, difficult

* Directive-based Approach

— Appear as comments in the source
— IACCSDO VECTOR (1)

— Compilers can analyze and (hopefully) generate efficient
code

‘w' * Dependent on maturity

Directive-Based Approach

 Maintain a single source code (Fortran)
— Same code for CPU, GPU, serial, and parallel

— Models used for research and operations
 Community models continue to be developed

— Scientists are the “keepers” of the code
* Owners of the science
* Expected to modify & maintain their code

— Software engineers improve performance, find
parallel bugs, port codes, etc

e User must insert directives into their code

v 29 40,
s Sa,.
5 v
. .
.)
. .
. ¥
¥ .
. g
o &
. e
“en

Goal to Maintain a Single Source

* Significant challenge

— GPU, CPU architectures are quite different
* Memory hierarchy
* Loop level versus block level parallelism
* Inter-GPU communications

 Heavy reliance on compilers and other tools

— Code analysis
* parallelization diagnostics

— Loop reordering

— Data management (register, constant, shared, global,
etc)

* To what extent will algorithm changes be needed
w to extract independent, fine grain parallelism?

d s

‘ ' — Will the solution be performance portable?

Directive-Based Fortran GPU
Compilers and Portability

* No industry standard for directives (yet)

— PGI: Accel — CAPS: HMPP
— F2C-ACC: OpenSource — Cray: OMP “like”

GPU Compilers

F2C-ACC *
Fortran

CAPS

Fortran GPU Compilers

* General Features
— Do not support all Fortran language constructs
— Converts Fortran into CUDA for further compilation

CAPS — HMPP

— Extensive set of parallelization directives to guide compiler analysis
and optimization

— Optionally generates OpenCL

PGI

— ACCELERATOR — directive-based accelerator

— CUDA Fortran — Fortran + language extensions to support Kernel calls,
GPU memory, etc

F2C-ACC

— Developed at NOAA for our models
@— Requires hand tuning for optimal performance

v 29T ra,

v

CAPS-HMPP Compiler

Multi-core Fortran
— CUDA, OpenCL code generation

Extensive set of directives
— Parallelization
— Optimization
A minimal set of directives to
get a working code
— Compiler will do what it safely can
and provide diagnostic
information
Our evaluation began ~4
months ago
- — Good documentation & support

-y
by CAPS

®hmpp

Monucore

portable programming

Rapidly develop GPU accelerated applications
with a source to source tool

Benefit from

the performance of
GPU accelerated
systems while
reducing your
development efforts

‘GPU programming and tuning directives

ClFortran source-to-source compller

OpenCL.
back-end

HMPP preprocessor

investment)| compilers
* Remain independent from j Spsoctddvacs;
the hardware platform w

* Do not lock fo a vendor
specific API

* Work with C and Forfran
standard compilers

- Distribute computations
between CPU and
accelerators

* Provide hardware
interoperability

+ Complementary to
OpenMP™ and MPI

May 2010

http://www.caps-entreprise.

Ty
ESRIS
.STEMSIDIVISION]

PGI Directives

* Directives are placed directly in the code body

— Define an accelerated region
* 1Sacc region([copy | copyout | copyin]) begin
* 1Sacc region end

— User defines loop level parallelism

 1Sacc do [vector | parallel | unroll]
vector = thread, parallel =threadblock

— Define data resident on the GPU
* 1Sacc data region (copy | copyin | copyout)

o 24T ba,
- 2,
5 .

. +
K .
" .
. ¥
" .

.
¢ .
. >
o /’
. 4
wer

F2C-ACC GPU Compiler

* Developed to speed parallelization of NIM
— Commercial compilers were not available in 2008
— 25x speedup over 1 CPU core in 2009

 Translates Fortran to C or CUDA

— Many (but not all) language features supported

— Generates readable, debuggable code with original
comments retained

— No code optimizations are being done

e Continues to be developed
— Used at NOAA and by research groups worldwide
— Improving code analysis & diagnostics

* Variable usage within and between GPU kernels

* GPU data management

F2C-ACC Directives

e Define GPU Kernels

ACC$REGION (< THDs >,< BLKs >) BEGIN
ACCSREGION END

* Define loop level parallelism

ACCSDO VECTOR(dim [range]) - thread
ACCSDO PARALLEL (dim [range]) - blocks

* Data movement
ACCSDATA (<var: intent, type>]) BEGIN

intent: 1in, out

type: shared, constant, global memory

ACCSREGION(< THD >,< BLK >, <var: intent,

intent: in, out, inout, none

scope: global, local, extern, none

scope >)

i

F2C-ACC Directives

e Restricting Thread Ops
ACCSTHREAD (dim, [range])
ACCSDO PARALLEL \ VECTOR (dim, [range])

* Thread Synchronization
ACCSSYNC

e Translation Limitations
ACCSINSERT, ACCSINSERTC, ACCSREMOVE

Available to the community
Users guide
Limited support
http://www.esrl.noaa.gov/gsd/ad/ac/Accelerators.html

F2C-ACC Translation to CUDA
(Input Fortran Source)

subroutine SaveFlux(nz,ims,ime,ips,ipe,ur,vr,wr,trp,rp,urs,vrs,wrs,trs,rps)
implicit none
<input argument declarations>

!ACCSREGION(<nz>,<ipe-ips+1>,<ur,vr,wr,trp,rp,urs,vrs,wrs,trs,rps:none>) BEGIN
IACC$DO PARALLEL(1)
do ipn=ips,ipe
IACC$DO VECTOR(1)
do k=1,nz
urs(k,ipn)

ur (k,ipn)

vrs(k,ipn) vr (k,ipn)
trs(k,ipn) = trp(k,ipn)
rps(k,ipn) = rp (k,ipn)
end do !k loop
!ACCS$THREAD (0)
wrs(0,ipn) = wr(0,ipn)
IACC$DO VECTOR(1)
do k=1,nz
wrs(k,ipn) = wr(k,ipn)
end do !k loop
end do !ipn loop
!ACCSREGION END
return
end subroutine SaveFlux

: | zé-)
L FSRIE
SYSTENSIDIVISION]

F2C-ACC Translated Code (Host)

extern "C" void saveflux (int *nz_ G,int *ims_G,int *ime G,int *ips G, int *ipe_G,float *ur,float
*vr,float *wr,float *trp,float *rp,float *urs,float *vrs,float *wrs,float *trs,float *rps) {

int nz=*nz_G;

int ims=*ims__Gj;
int ime=*ime G;
int ips=*ips__ G;
int ipe=*ipe G;

dim3 cuda_threadsl(nz);

dim3 cuda gridsl(ipe-ips+1);

extern float *d_ur;
extern float *d vr;
< Other declarations>

saveflux_ Kernell<<< cuda_gridsl, cuda_threadsl >>>
(nz,ims,ime, ips,ipe,d ur,d vr,d wr,d trp,d rp,d urs,d vrs,d wrs,d trs,d rps);
cudaThreadSynchronize();
// check if kernel execution generated an error
CUT_ CHECK_ERROR("Kernel execution failed");
return;

F2C-ACC Translated Code (Device)

#include “ftnmacros.h”

//'ACCSREGION(<nz>,<ipe-ips+1>,<ur,vr,

__global -
*wr,float *trp,float *rp,float

wr,trp,rp,urs,vrs,wrs,trs,rps:none>) BEGIN

void saveflux Kernell(int nz,int ims,int ime,int ips,int ipe,float *ur,float *vr,float

*urs,float *vrs,float *wrs,float *trs,float *rps) {

int ipn;

int k;

//'ACC$DO PARALLEL(1)
ipn = blockIdx.x+ips;

// for (ipn=ips;ipn<=ipe;ipn++) {

//1ACCS$DO VECTOR(1)

k = threadIdx.x+1;
for (k=1;k<=nz;k++) {
urs[FTNREF2D(k,ipn,nz,1,ims)]
vrs[FTNREF2D(k,ipn,nz,1,ims)]
trs[FTNREF2D(k,ipn,nz,1,ims)]
rps[FTNREF2D(k,ipn,nz,1l,ims)]

// }

//VACCSTHREAD (0)

if (threadIdx.x == 0) {

wrs[FTNREF2D(0,ipn,nz-0+1,0,ims)]

//

}
//!'ACCSDO VECTOR(1)

k = threadIdx.x+1;
// for (k=1;k<=nz;k++) {
wrs[FTNREF2D (k,ipn,nz-0+1,0,ims)] =
// }
//}
return;

-
/ / |1 ACCSREGION END

.

Key Feature: Translated
CUDA code is human-
readable!

= ur[FTNREF2D(k,ipn,nz,1,ims)];

vr [FTNREF2D(k,ipn,nz,1,ims)];
trp[FTNREF2D(k,ipn,nz,1,ims)];
rp[FTNREF2D (k,ipn,nz,1,ims)];

= Wwr[FTNREF2D(0,ipn,nz-0+1,0,ims)];

wr [FTNREF2D(k,ipn,nz-0+1,0,ims)];

a2 ESRI®
SYSTENSIDIVISION]

Outline

e GPU Parallelization of NIM

ow i e,
‘4,
-
. .

o %
o "
. B
* .
s 2
3 -
L .
« £

4
‘e o
Tiogan ¢

Non-hydrostatic Icosahedral Model
(NIM)

Lat/Lon Model Icosahedral Model

* Near constant resolution over the globe
1t high resolution simulations

(slide courtesy Dr. Jin Lee)

Non-hydrostatic Icosahedral Model (NIM)
(Lee,MacDonald)

— Global Weather Forecast Model, developed at ESRL
— Uniform, hexagonal-based, icosahedral grid

— Novel indirect addressing scheme permits concise,
efficient code

— Designed and optimized for CPUs and GPUs
* Very good performance on both
* Luxury of changing code for optimal performance

— Plans to run at 4KM resolution on GPUs

— Dynamics is running entirely on GPUs

* Horizontal data dependencies /\
e 2D arrays (vertical, horizontal) = k
* GPU threading across the vertical §
— 32,96 points - - - > 192 points = ipn
* Physics (scientific) integration in progress - —>
blocking
NIM: a (k, ipn)

Y 3L
YSvTEMS DIVISION]

NIM/FIM Indirect Addressing
(MacDonald, Middlecoff)

B Single horizontal index

B Store number of sides (5 or 6) in
“nprox’ array

B nprox(34)=6

Store neighbor indices in “prox”
array

B prox(1,34) =515
m prox(2,19)=3

Place directly-addressed vertical
dimension fastest-varying for
speed

Very compact code
Indirect addressing costs <1%@e.

(slide courtesy Tom Henderson)

Resolution nomenclature

glvl Number of grid points Linear Scale (km)
0 12 7,071
1 42 3,779
2 162 1,174
3 642 891

4 2562 446

5 10,242 223

6 40,962 111

7 163,842 56

8 655,352 28

9 2,611,442 14

10 10,445,762 7

11 41,943,042 3.5
12 167,772,162 1.75

Titan Summit

6’? ESRIA
'TEMS DIVISION]

Code Parallelization (2009)

* Developed the Fortran-to-CUDA compiler (F2C-ACC)
— Commercial compilers were not available in 2008

— Converts Fortran 90 into C or CUDA-C Single GPU

communications

— Some hand tuning was necessary

* Parallelized NIM model dynamics

* Tesla Chip, Intel Harpertown (2008)
e Result for a single GPU
 Communications only needed for I/0O

NIM Dynamics (version 160)

| Resolution | _HorizPts | Harpertown | __Tesla__

G4-480km 2562 2.13 0.079 (26.9) 1.45 0.054 (26.7)
i G5-240km 10242 8.81 0.262 (33.5) 5.38 0.205 (26.2)

Model Parallelization (2010)

Updated NIM Model Parallelization

— Active model development GPU to GPU

communications

— Code optimizations on-going

e Evaluate Fortran GPU compilers
— Use F2C results as benchmark

* Evaluate Fermi

 Run on Multiple GPUs
— Modified F2C-ACC GPU compiler
— Uses MPI-based Scalable Modeling System (SMS)
— Testing on 10 Tesla & 10 Fermi GPUs

ow i e,
Y4
»
. .

B £y
o "
. B
* .
s 2
3 -
L .
- -

4
‘e e
om0 Y

Achieving High Performance
#1 Optimize the CPU code

— Modifications often help the GPU performance too

* Performance Profiling identified a matrix solver that accounted for
40 percent of the runtime

— Called 150,000 per timestep (G4), 3.6 million for 3.5KM

— Replaced BLAS routine with hand-coded solution resulting in a 3x
performance increase for the entire model

— Loop unrolling improved overall performance by another 40 percent
» Developed test kernels to study CPU & GPU performance

— Organize arrays so the inner dimension will be used for
thread calculations

* Improve loads & stores from GPU global memory

_ — Re-order calculations to improve data reuse

. v

®)
-)
. .
N *
¥ .
.

N >

N .
" w4
T

/

ELEEAL DIVISI@N

Achieving High Performance

#2 Optimize GPU Kernels (major issues)

— Use the performance profiler to identify bottlenecks
* Occupancy

— Largely determined by registers and shared memory usage
* Coalesced Loads and Stores

— Data alighment with adjacent threads can yield big performance
gains

» Eg. Threading on “k”, for” a(k,l,j)”
* Use Shared memory or registers where there is data reuse

— Must be at least > 3 to have benefit (2 loads & stores are needed
to move data from global to local memory

g 240400,
Lt Sa,
. v
®)
-)
. .
N *
¥ .
.
N >
N .
" w4
T

Achieving High Performance

#2 Optimize GPU Kernels (major issues)

— Use the performance profiler to identify bottlenecks
* Occupancy

— Largely determined by registers and shared memory usage
* Coalesced Loads and Stores

— Data alighment with adjacent threads can yield big performance
gains

» Eg. Threading on “k”, for” a(k,l,j)”
* Use Shared memory or registers where there is data reuse

— Must be at least > 3 to have benefit (2 loads & stores are needed
to move data from global to local memory

g 240400,
Lt Sa,
. v
®)
-)
. .
N *
¥ .
.
N >
N .
" w4
T

Fortran GPU Compiler Comparison (2009)

Using NIM G4 - 2562 horizontal points, 96 vertical levels
Tesla GPU vs. Intel Harpertown CPU Core

Harpertown F2C-ACC HMPP Tesla PGl Tesla
CPU Time CUDA-C GPU GPU

Tesla GPU Speedup Speedup
Speedup

vdmints 88.86
vdmintv 37.73
flux 17.97 25 17 24
vdn 12.77 22 17 --
force 5.34 46 28 12
TOTAL 194.25 (7.48) 26 (7.49) 26

WRF Physics

e Community Model used worldwide for more than a decade
— Significant number of collaborators, contributors
 Usedin WRF-ARW, WRF-NMM, WRF-RR, WRF-CHEM, HWREF, etc.
* Traditional cartesian grid
— 3D arrays (horizontal, vertical, horizontal) ==>array3D(i,k,Jj)
* Designed for CPU architectures
* Limited ability to change the code
— Must continue to be performance portable

* GPU parallelization
— In progress — select routines
— Dependencies in vertical
— GPU: threading in horizontal dimensions : >
blocking

ow AT e,
54,
5 v
. .
.)
. "
. ¥
* .
. g
o /’
. o
“en

WRF: a (i,k,J)

Parallelization Factors for NIM

* Code design a dominant factor in performance

— Weather codes typically have a high memory access to
compute ratio
* Implies lots of accesses, few computations

— Data alignment led to a 10x improvement

* Data dependencies guide
parallelization lat-lon a (k, i, 3)
— Dynamics are in the horizontal
* a[vert, horiz]
— Physics are in the vertical column K i
* a[horiz, vert] ‘ ;
_.— Transpose needed to optimize

g
-

|@’ memory accesses

NIM: a [k, indx)

Successes

e Parallelization of NIM

— 25x performance speedup of NIM dynamics
— Continues to be used for NIM

* Development of F2C-ACC

— Useful for comparisons to commercial compilers
» Establish performance benchmarks
* Ease of use: readability of generated code
* Directives that support our weather, climate codes
* Validate correctness of results
— Feedback to vendors
* Communicate needs in the weather and climate community

@— Helped improved Fortran GPU compilers

. .
. "
¥ "

4 'l’
o &
. e 4
e

Challenges: Validating Results

* Results vary depending on the computer architecture
— CPU, GPU, Intel, IBM, etc

— If you are running on the same computer, will Fortran and C
generate the same exact result?

* How are intrinsics, constants are calculated? (SP or DP?)
* |s there a set of compiler options that will give the same answer

* Model numerics
— Physics is more sensitive than dynamics
— How do you determine acceptable results?

* Run the model or routine, compare results after XX number of time steps

— Bitwise exact result (all digits)
» Fortran, C on the same machine?
» Fortran, CUDA on the same machine?

— “Nearly” bitwise exact (5, 6 digits)
» Cand CUDA on different architectures?
» Fortran and CUDA on CPU and GPU?

— Diverging results? (2,3 digits)
» Depends ... need scientific guidance

g 240400,
Lt Sa,
. v
®)
-)
. .
N *
¥ .
.
N >
N .
" w4
T

ELEEAL DIVISI@N

Final thoughts

* Code design a dominant factor in performance
— Data alignment led to a 10x improvement

 Data dependencies guide parallelization

* Performance tools are improving ¢ .
j

— Help to determine speedup potential lat-lon a (k, i, j)
NIM: a (k, indx)

* Debugging is challenging
— Potentially millions of threads to manage

e Commercial Fortran GPU compilers are maturing
— F2C-ACC is largely a language translator, limited analysis
— As CAPS, PGI mature, they should do more analysis and

woph mization

Opportunities at NOAA

* Good science being done

— Weather, climate, chemistry, land surface, remote
sensing, instruments, high performance
computing

* Hollings Scholarships

— Graduate and undergraduate students
e summer

. Email: mark.w.govett@noaa.gov

C :
'. s
A
4 'l-
. .

Quick Links
mark.w.govett@noaa.gov

CUDA ZONE

programmers guide
software
tools
links

