Successes and Challenges Using
GPUs for Weather and Climate
Models

Mark Govett
Tom Henderson, Jacques Middlecoff,
Jim Rosinski

NOAA Earth System Research Laboratory

GPU Programming Approaches

* Language Approach
— CUDA, OpenCL, CUDA Fortran, etc.

— User control over coding and optimizations
* Vendor specific optimizations
* May not be portable across architectures

— Requires that separate versions be maintained
* In practice this rarely works — too costly, difficult

* Directive-based Approach

— Appear as comments in the source
— IACCSDO VECTOR (1)

— Compilers can analyze and (hopefully) generate efficient
code

‘w' * Dependent on maturity

Directive-Based Approach

 Maintain a single source code (Fortran)
— Same code for CPU, GPU, serial, and parallel

— Models used for research and operations
 Community models continue to be developed

— Scientists are the “keepers” of the code
* Owners of the science
* Expected to modify & maintain their code

— Software engineers improve performance, find
parallel bugs, port codes, etc

e User must insert directives into their code

v 29 40,
s Sa,.
5 v
. .
.)
. .
. ¥
¥ .
. g
o &
. e
“en

Goal to Maintain a Single Source

* Significant challenge

— GPU, CPU architectures are quite different
* Memory hierarchy

* Loop level versus block level parallelism
* |Inter-GPU communications

 Heavy reliance on compilers and other tools

— Code analysis
* parallelization diagnostics

— Loop reordering
— Data management (register, constant, shared, global, etc)

* To what extent will algorithm changes be needed to
‘..ﬁxextract independent, fine grain parallelism
V — Will the solution be performance portable

Directive-Based Fortran GPU
Compilers and Portability

* No industry standard for directives (yet)

— PGI: Accel — CAPS: HMPP
— F2C-ACC: OpenSource — Cray: OMP “like”

GPU Compilers

F2C-ACC *
Fortran

CAPS

Non-hydrostatic Icosahedral Model (NIM)
(Lee,MacDonald)

— Global Weather Forecast Model
— Developed at ESRL
— Uniform, hexagonal-based, icosahedral grid

— Novel indirect addressing scheme permits concise,
efficient code

— Designed and optimized for CPUs and GPUs
* Very good performance on both

W
i

\
T

W

¥
i

\

* Luxury of changing code for optimal performance

— Dynamics is running entirely on GPUs
» 25x speedup (5x%, socket to socket)
* Horizontal data dependencies
e 2D arrays (vertical, horizontal)

* GPU threading across the vertical
— 32, 96 points - - - > 192 points —

* Physics integration in progress blocking
NIM: a (k, ipn)

Y 3L
YSvTEMS DIVISION]

>~

Su!pean1>

ipn

WRF Physics

e Community Model used worldwide for more than a decade
— Significant number of collaborators, contributors
 Usedin WRF-ARW, WRF-NMM, WRF-RR, WRF-CHEM, HWREF, etc.
* Traditional cartesian grid
— 3D arrays (horizontal, vertical, horizontal) ==>array3D(i,k,Jj)
* Designed for CPU architectures
* Limited ability to change the code
— Must continue to be performance portable

* GPU parallelization
— In progress — select routines
— Dependencies in vertical
— GPU: threading in horizontal dimensions : >
blocking

ow AT e,
54,
5 v
. .
.)
. "
. ¥
* .
. g
o /’
. o
“en

WRF: a (i,k,J)

F2C-ACC GPU Compiler

* Developed to speed parallelization of NIM
— Commercial compilers were not available in 2008
— 25x speedup over 1 Intel Westmere core, ~ 5x socket to socket

 Translates Fortran to C or CUDA

Many (but not all) language features supported

Generates readable, debuggable code with original comments
retained

No code optimizations are being done

 Continues to be developed
— Used at NOAA and by research groups worldwide
— Improving code analysis & diagnostic messages

g 240400,
Lt Sa,
. v
®)
-)
. .
N *
¥ .
.
N >
N .
" w4
T

e Variable usage within and between GPU kernels
* GPU data management

F2C-ACC Directives

e Define GPU Kernels

ACC$REGION (< THDs >,< BLKs >) BEGIN
ACCSREGION END

* Define loop level parallelism

ACCSDO VECTOR(dim [range]) - thread
ACCSDO PARALLEL (dim [range]) - blocks

* Data movement
ACCSDATA (<var: intent, type>]) BEGIN

intent: 1in, out

type: shared, constant, global memory

ACCSREGION(< THD >,< BLK >, <var: intent,

intent: in, out, inout, none

scope: global, local, extern, none

scope >)

i

F2C-ACC Directives

e Restricting Thread Ops
ACCSTHREAD (dim, [range])
ACCSDO PARALLEL \ VECTOR (dim, [range])

* Thread Synchronization
ACCSSYNC

e Translation Limitations
ACCSINSERT, ACCSINSERTC, ACCSREMOVE

Available to the community
Users guide
Limited support
http://www.esrl.noaa.gov/gsd/ad/ac/Accelerators.html

Successes

e Parallelization of NIM

— ~5x socket-to-socket speedup of NIM dynamics

* Development of F2C-ACC

— Useful for comparisons to commercial compilers
» Establish performance benchmarks
* Ease of use: readability of generated code
* Directives that support our weather, climate codes
 Validate correctness of results

— Feedback to vendors
« Communicate needs in the weather and climate community

w— Helped improved Fortran GPU compilers

Challenges: Validating Results

* Results depend on:
— Computer architecture — different machines give different results

— Compiler options and language
* How intrinsics are calculated, constants defined? (in SP or DP)

* To validate results, run the model or routine & compare
results after XX number of time steps

— Bitwise exact result (all digits)
* For Fortran, C on the same machine - F2C-ACC validates, not PGl
* Fortran, CUDA on the same machine - compiler options required
— “Nearly” bitwise exact (5, 6 digits)
e Cand CUDA on different architectures?
e Fortran and CUDA on CPU and GPU?
— Diverging results (2,3 digits)

* Numerics could be correct but scientists need to approve
— Physics may be acceptable

. — Probably not acceptable for dynamics
‘w'— How do you determine acceptable results? T

ELEEAL DIVISI@N

Challenges: Performance Portability

 CPU: PBL declares 3D arrays, but uses 2D slices for inner
loop calculations

— Array3D (i, k,j) ==> Array2D(i,k)
— Done to improve cache utilization
e GPU: 2D arrays in YSU had to be promoted to 3D where,
— Data dependencies are in “k”
— Threading over the “i” dimension
— Blocking over the “j” dimension
— Needed for correctness and good performance on the GPU
— Resulted in a 50 percent performance penalty on the CPU

. JiM Rosinski’s talk will discuss a “chunking” solution for NIM

: ; ovd I
Teae T aeE ISYSTENMSIDIISION,

Application Requirements

e Restriction on the number of formal arguments
— CUDA has a 256 bytes limit (64 — 4 byte words)

NVCC: Formal parameter space overflowed
in function ..

— Typical for physics routines
 WRF - PBL has ~ 50 subroutine arguments
e 25-30 local arrays are also passed to GPU via argument list

e Solution via F2C-ACC

— Declare and use constant memory

— Analysis local variables and scalars to reduce number of
arguments being passed into each kernel

v 29 40,
s Sa,.
5 v
. .
.)
. .
. ¥
¥ .
. g
o &
. e
“en

Application Requirements

e User control over thread and block dimensions

— Assigning multiple columns to a thread block

* Small array dimensions (eg. < 64) mean less parallelism
— array2D(64, 5000) - where nThreads=64, nBlocks = 5000
— Better performance by striding across block dim
» Eg. nThreads =4 * 64, nBlocks = 500/4

— Assigning threads and blocks to the same array
dimension

 Single large array dimension with block and thread
parallelism
— array2D (5000, 64), where 2" dimension cannot be parallel
— Contiguous memory references for threading
— Stride across thread dimension for each block

v 29 40,
s Sa,.
5 v
. .
.)
. .
. ¥
¥ .
. g
o &
. e
“en

Application Requirements

* Directives to support

— Promotion of variables

 Added dimension needed for block or thread
parallelization

— 2D array + + +> 3D array
* Needed for correctness & performance
— Demotion of variables
* 1D arrays - - -> GPU register variables

e 2D arrays - - -> shared memory arrays
* Results in improved performance

g 34 400,
Lt Sa,.
. .

. +
-)
. s
: -
I3 "

.
. >
‘. .
. o
TH

Conclusion

e Committed to a single source
— We anticipate significant challenges for legacy codes

* We will continue to use and develop F2C-ACC

— Until commercial compilers mature

* Intend to use in tandem with commercial compilers for now

— Provide Fortran-to-Fortran code transformations
where there are gaps in the commercial compilers

* More diagnostics will simplify parallelization
— Compilers state when parallelization is done

.. — They don’t state why parallelization could not be done

5
. .
.)
. .
. ¥
¥ .
. g
o &
. e
“en

