
NotificationServer Implementation
Gerry Murray
April 28, 1998
Note: This document describes the state of the notification server software midway through
Build 4.2 development. Several changes were made in the details of the server's operation. An
update of this document is pending.

The notification server's primary purpose is to receive and gather messages from decoder
processes and other data suppliers signifying that new data has arrived and is now ready to
display or process. It then determines which depictables are interested in those data notifications,
and when they want to be notified. Finally, the server matches the notification times with
corresponding inventory times, and sends those inventory times to processes that are currently
using those depictables.

Now that we have an overview of what the notification server does, here is an overview of the
implementation, categorized by functionality. This document only describes the implementation
of version 4.2 to be released in August, 1998. Previous versions of the server have the same
functionality but the implementation may differ substantially. This document discusses the
implementation of the following functionality:

• Client Registration for Depictable Notifications
• Notification of the Latest Inventory Time Upon Depictable Registration
• Receiving Data Notifications
• Converting Data Notifications into Depictable Notifications
• Sending Depictable Notifications
• Fault Tolerant Inventory Retrieval and Caching
• Restoring State after a Restart
• Statistical Reporting
• Notification Trace Logging

 Client Registration for Depictable Notifications

When a client like the IGC_Process loads a product and decides that the product needs to auto-
update, the IGC will send an IPC message to the notificationServer process. Our process uses a
"named target" which means that its IPC address is easily found by other processes. Most of the
real work is done in the Notification Server singleton (one per process) object and its subsidiary
objects. This singleton object is also a receiver (subclass of DataMgmtReceiver); thus all the
NotificationServer::receive* methods are for receiving and intepreting incoming IPC messages.

mailto:%20gerry.murray@noaa.gov
http://esrl.noaa.gov/gsd/eds/fxa/doc/notServer.html%23Client%20Registration%20for%20Depictable%20Notifications
http://esrl.noaa.gov/gsd/eds/fxa/doc/notServer.html%23Notification%20of%20the%20Latest%20Inventory%20Time%20Upon%20Depictable%20Regis
http://esrl.noaa.gov/gsd/eds/fxa/doc/notServer.html%23Receiving%20Data%20Notifications
http://esrl.noaa.gov/gsd/eds/fxa/doc/notServer.html%23Converting%20Data%20Notifications%20into%20Depictable%20Notifications
http://esrl.noaa.gov/gsd/eds/fxa/doc/notServer.html%23Sending%20Depictable%20Notifications
http://esrl.noaa.gov/gsd/eds/fxa/doc/notServer.html%23Fault%20Tolerant%20Inventory%20Retrieval%20and%20Caching
http://esrl.noaa.gov/gsd/eds/fxa/doc/notServer.html%23Restoring%20State%20after%20a%20Restart
http://esrl.noaa.gov/gsd/eds/fxa/doc/notServer.html%23Statistical%20Reporting
http://esrl.noaa.gov/gsd/eds/fxa/doc/notServer.html%23Notification%20Trace%20Logging

NotificationServer::receiveDepictRegistration() handles a request from a client process to
register for one or more depictables. NotificationServer::receiveDepictCancellation() performs
the inverse service. Both methods delegate the real work to the
NotificationServer::_depictRegistrations object. This singleton manages all the depictable
registrations. It provides two important mappings:

• Depictable to IPC addresses of interested processes.
• Data access key to associated depictables.

It also contains some useful attributes for the registered depictables such as how often the
depictable wants to be updated, or whether notification times for this depictable should match
exactly with the inventory times. Registration and cancellation requests are ultimately handled
by this singleton so that the internal data structures can be updated.

Notification of the Latest Inventory Time Upon Depictable
Registration

Since the UI process has enough to do at initialization, it doesn't want to be obtaining inventories
just to get the latest time for display on a product button. That is why a registering process can
ask the notification server to send back the latest time for the depictable it is registering for.

When the notification server is asked to do this, it is usually registering many depictables with a
single request from the client process. The server maintains an inventory cache for various
depictables. For more about the inventory cache, check out the section describing inventory
retrieval and caching . NotificationServer::receiveDepictRegistration() builds a list of all
registered depictables that have a valid, cached inventory and uses the list to send a large IPC
message back to the client containing those depictables and their latest times. Of course, if the
cache is empty or small, very few times are sent back to the client.

Sometimes, the client will request a latest time for an inventory that has not been fetched yet. In
this case, we defer this request since fetching the inventory can be time consuming and we don't
want to spend excessive time while handling an incoming IPC message. This request is deferred
by adding the depictable key and client's IPC address to the data structure:
NotificationServer::_unsentRegisterNotifies(). The server's flow of control calls
NotificationServer::sendRegistrationNotification() when there isn't more important tasks to do.
This method finds the latest time of one of the depictables in the data structure and sends that
time to all interested client processes. If the send failed, all of the client's depictable registrations
are automatically cancelled.

Receiving Data Notifications

http://esrl.noaa.gov/gsd/eds/fxa/doc/notServer.html%23Fault%20Tolerant%20Inventory%20Retrieval%20and%20Caching
http://esrl.noaa.gov/gsd/eds/fxa/doc/notServer.html%23Fault%20Tolerant%20Inventory%20Retrieval%20and%20Caching

Messages signifying new data arrive asynchronously via the IPC mechanism. They are handled
by NotificationServer::receiveDataNotification() and consist of a data access key and a
DataTime object. The time usually corresponds to a time on the inventory but it doesn't have to!
The method asks the DepictRegistrations singleton if there are any registered depictables that are
associated with the data key. If not, the data message is ignored. If so, the key and time is added
to a dictionary of DataTime sets (NotificationServer::_newDataList). Each time set is sorted so
that the latest time is the last set element. This is useful for validating a cached inventory in some
cases which will be discussed in the section covering the validation of cached inventories .

Converting Data Notifications into Depictable Notifications

The notification server buffers all data notifications that arrive during a fixed interval of time
(currently hard-coded to 20 seconds). We do this because data notifications come in very
frequently and are often redundant. Inventories take much longer to get; if we sent out a depict
notification every time a data notification came in, we would not be very responsive to incoming
IPC, possibly causing socket buffers to overflow.

At the end of a data collection interval, we convert data notifications into depictable notifications
by calling NotificationServer::generateDepictNotifications(). Its job is to loop through every
data notification that has been placed in the new data list by
NotificationServer::receiveDataNotification(). Each data notification is converted into one or
more depictable notifications depending on how many depictables are associated with that data
key. Depictable notifications consist of a depict key and a set of DataTime objects. It computes
the depictable notification time set by merging all the associated data notification sets. Most
depictable notifications are sent out by the next time interval, but some are deferred and can be
around for several intervals. It is possible for a data notification to add a new time to an existing
depictable notification. Once we loop through all the data notifications, we clear the data
structure, NotificationServer::_newDataList since all the data notifications have been converted
and are no longer needed. At this point, we also increment our statistical counters.

Deferring Certain Depictable Notifications

Depictable notifications are either placed at the back of the pending notification queue
(NotificationServer::_pendingDepictNotifies) or placed in the deferred notification table
(NotificationServer::_deferredDepictNotifies), depending on how frequently this depictable is
to update. The frequency is part of the depictable's meta-data that is stored in the
DepictRegistrations singleton object. This object gets this information from a
DM_DepictableInfo object at depictable registration. Notifications are deferred with frequencies
greater than 20 seconds. If it is a deferred notification, the expiration time (current time +
frequency) and the depictable key is placed in a dictionary
(NotificationServer::_delayExpirations) that maps expiration times to depict key with the times
sorted from earliest to latest. Purpose of this data structure is so
NotificationServer::sendNotification() will know which deferred notification to process next.

http://esrl.noaa.gov/gsd/eds/fxa/doc/notServer.html%23Retrieving%20and%20Validating%20a%20Cached%20Inventory

Sending Depictable Notifications

As mentioned earlier, our first priority is to be responsive to incoming IPC. The next important
priority is to send out the depictable notifications that we have generated. Notifications are sent
out one at a time while there are no incoming IPC messages to receive. This is repeated until
there are no notifications to send. At this point, more depictable notifications can be generated (if
at least 20 seconds have elapsed) or some registration notifications can be sent.

A single depictable notification is sent to all interested processes using the following algorithm:

1. Select a depictable notification to send. It can be the earliest one on the deferred
notification list whose time is earlier than the current time. Or it can be the first
notification on the pending notification queue. In either case, the notification is removed
from its corresponding data structure. A depictable notification consists of a depictable
key and a set of DataTime objects representing the notification times.

2. Get an inventory from the cache. The inventory cache decides whether to calculate a new
inventory using the set of notification times or to just use the cached inventory.

3. Use ::inInventory() to determine which inventory times match the notification times. An
exact match or a closest match strategy can be used depending on the depictable. Like the
frequency attribute, this attribute is obtained when the depictable is registered by using a
DM_DepictableInfo object. An exact match algorithm returns the index of the inventory
time that matches exactly with the specified time; i.e. either analysis times or reference
times are equal and both forecast times are equal. A closest match algorithm returns the
index of the earliest inventory time that is later than the specified time. If the specified
time is later than the latest inventory time, then the index for the latest time is returned.

4. Construct an IPC message for each matched inventory time. The message includes the
key, the matched inventory time, and the entire inventory.

5. Send this message to each process associated with the depictable. If the send failed,
cancel all of the client's depictable registrations.

Fault Tolerant Inventory Retrieval and Caching

The NotificationServer singleton uses a helper singleton object,
NotficationServer::_inventoryCache to do inventory retrieval and caching. The cache singleton
works with another helper singleton, NotificationServer::_ourSigHandler to provide resilience
when computing inventories.

Retrieving and Validating a Cached Inventory

The inventory cache is simply a dictionary of pointers to inventories (list of DataTime objects)
indexed by depictable key. All inventory requests are made through the method
InventoryCache::retrieve() with the caller specifying the depictable key and a set of times used
to validate the cached inventory. An empty set of times may be used indicating that the cached
inventory should be returned without validation (if there is one to return). There are two ways to
validate an inventory, so the caller also has to specify which approach to use.

Retrieving an inventory involves checking to see if the inventory is available on the cache. If so,
it is validated using one of the two methods described below. If valid, then it is returned. If the
inventory is invalid or not in the cache, we have to obtain the inventory in a potentially arduous
manner described in the next section. But before doing so, we free the memory allocated for the
invalid cached inventory.

The first method of cache validation ensures that every validation time exactly matches a time on
the inventory. If not, the cached inventory is considered invalid.

The second method is more forgiving than the first. If the latest time on the validation set is
earlier than the latest time on the inventory, the inventory is valid. Otherwise, it is not.

Computing an Inventory

To compute an inventory, we use the static method, DepictableInventory::allTimes() which may
execute a heterogeneous assortment of algorithms depending on the depictable and the data
accessor supporting that depictable. Some are extremely robust and efficient while others are not.
For that reason, we decided to allow the notification server to continue even if a run-time
exception or fault is encountered while obtaining the inventory.

The fault tolerance requirement is implemented with the Unix jump mechanism. The run-time
environment is saved with the Unix routine, setjmp() just before
DepictableInventory::allTimes() is called. If an exception is thrown, the signal catcher will pass
it to the singleton object, NotificationServer::_ourSigHandler which will call longjmp() and
return us back to the place where setjmp() was called. At that point, we know that we can not get
a valid inventory, so we return immediately from InventoryCache::retrieve() passing the caller a
null pointer.

If allTimes() succeeds, we insert the pointer to the inventory into the cache table
(InventoryCache::_cache) and return the pointer to the caller of InventoryCache::retrieve().
The memory for the inventory is allocated by allTimes() but the responsibility for deleting the
memory is the sole responsibility of the cache singleton object. Other NotificationServer
methods can access the inventory for read only, but should never destroy the inventory.

Restoring State after a Restart

An important design requirement is that restarting of the notification server process should be as
transparent as possible to the users of the display workstations. Of course, a few notifications
may be dropped on the floor while the server is down. However once the server is up and
running again, notifications should resume without having to restart the workstations.

Saving State

As stated earlier, NotificationServer::_depictRegistrations object handles the mapping between
registered depictables, processes, and data keys. Another important responsibility is the saving
and restoration of state. In order to do that, this object maintains a set of IPC_Target objects
(DepictRegistrations::_currentClients). Whenever a client registers or cancels a depictable
registration, we add or remove an IPC target from the set only if no other depictables are
associated with that client. Whenever, the set of addresses is modified, the method:
DepictRegistrations::saveClientState() is invoked. This method simply writes an ASCII
representation of each IPC address in the set to the file:

$FXA_DATA/workFiles/notificationServerClientListState.txt

Recovering the Saved State

Client state is restored by DepictRegistrations::restoreClientState() which is called at process
initialization. This method extracts each IPC address from the client state file, and sends a
message to each client process requesting the client to register again for all the depictables that it
is interested in. If we can not send this message to a process, we don't worry about it. It just
means that the client process has gone down while we were down. The
DepictRegistrations::_currentClients data structure is modified to contain the addresses of the
processes that we were able to send to. In addition, the client state file is written in order to
reflect the current state of the client set.

Statistical Reporting

Periodically, (currently hardcoded to be once an hour), a statistical report is logged via the
logStream category: DIAG by the method: NotificationServer::showServerStats(). Statistics
include the following:

• Registered depictables and their associated clients.
• Data notifications received and generated into depict notifications since the last report.
• Depictable notifications that were successfully and unsuccessfully sent since the last

report.
• Inventory cache including access times and size information.
• IPC usage. See src/threadIPC/SocketConnection.C for details.

A statistic report can be also produced by an outside stimulus, asynchronously, by using the
executable, testNotificationServer with an argument of 30003.

Notification Trace Logging

As you might imagine, if we logged all the notifications received and sent continuously, the size
of the log files would quickly become unmanageable. However, there are times while debugging
that it is useful to change to a mode of logging all activity without having to restart the server.
That is why there is a mechanism to trigger and un-trigger a verbose logging state by an outside
stimulus.

A user can provide that stimulus by running the testNotificationServer executable on any host on
the same network as the server with an argument of 30004. This will send an IPC message to the
server which will toggle the value of the boolean flag: NotificationServer::_notificationTrace.
With _notificationTrace set to true, the following situations are logged with the event category
instead of the verbose category:

• Receiving data notifications
• Constructing depict notifications
• Sending depictable and registration notifications
• Registering and cancelling Depictable registrations

	NotificationServer Implementation
	Client Registration for Depictable Notifications
	Notification of the Latest Inventory Time Upon Depictable Registration
	Receiving Data Notifications
	Converting Data Notifications into Depictable Notifications
	Deferring Certain Depictable Notifications

	Sending Depictable Notifications
	Fault Tolerant Inventory Retrieval and Caching
	Retrieving and Validating a Cached Inventory
	Computing an Inventory

	Restoring State after a Restart
	Saving State
	Recovering the Saved State

	Statistical Reporting
	Notification Trace Logging

